\Sh
Q
U
d

Language

INTRODUCTORY CONCEPTS
PRACTICAL PROGRAMMING APPLICATIONS
DETAILS OF ROM & RAM USAGE

DISK PROGRAMMING

HubertS.Howe).

A SPECTRUM BOOK $-810 $9.95

TRS-80

ASSEMBLY LANGUAGE

HUBERT S. HOWE, JR.

A\

A SPECTRUM 800K

Prentice-Hall, Inc.
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging in Publication DATA

Howg, HUBERTS
TRS-80 assembly language.

(A Spectrum Book)
Bibliography: p. 186

1. TRS-80 (Computer)—Programming. 2. Assembler
language (Computer program language) I Title.

QA76.8.TIBH68 001.642 80-20578

ISBN 0-13-931139-4
ISBN 0-13-931121-1 (pbk.)

To Stefanie

© 1981 by Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632
A SPECTRUM BOOK

All rights reserved. No part of this book may be reproduced in any form or by any means without
permission in writing from the publisher.

109 8 7 6 35

Printed in The United States of America

Editorial/production supervision by Frank Moorman
Interior design by Dawn Stanley
Manufacturing buyer: Cathie Lenard

This book was composed using a Diablo HyType I printer with Michael Shrayer’s Electric Pencil
program on a TRS-80 Model I Microcomputer.

PRENTICE-HALLINTERNATIONAL, INC,, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL OF CANADA, L1D., Toronto
PRENTICE-HALL OFJAPAN, INC,, Tokyo
PRENTICE-HALL OF SOUTHEAST ASIAPTE, LTD., Singapore
WHITEHALL BOOKS LIMITED, Wellington, New Zealand

TABLE OF CONTENTS

Part I: Basic Concepts

LANgUAgR. cocvonosescscososnacssssssssssansecoal
What is Machine Language?....ceeeeeecoosssscaal
Basic Components of the CompPUter..c.oseescesassl
The Memory of the TRS-8@.cieeeeececaconcscanoald
Binary and Hexadecimal NUMbDEIS.....eosceeansesd
ASCITocncaeacsecsccoconnsaoncecaosscossonosscsssah
Number Formats in BasSiC...eeeeesvesosoonsssoesl
Analyzing MemOrY.e.eeeoosnoeosacnsoaonnsnassesd

2. The Architecture Of the Z-=80 CPU.seecsacscsocassocoossd

REgI1SteISerneeesssonssosonsscsssocecoancsnosased
Instruction Mnemonics and OperandS....oveoeee.ll
Uses of the RegisterS.eeescecssccecescnnennsall
FlagS.aeesuasossaosoonsonossoceancsssessosocossssld
Addressing MOdeS..esvesesocsecccsansenseasanssald
Instruction Timing...seeeeceosecocscennoscaeaaslh

3. Overview of the Z-80 InsStruction Setbt.eeeecoceeeocsssal8

3.1
3.2
3.3

3.4
3.5

Wi wwww
e s o o
=00 -Jdo

8
1

Eight—~Bit LoAd GrOUPeeeicasccensssocasasasoceall
Sixteen-Bit LOad GrOUP.eeeornoseosenncnscanaall
Exchange and Block Transfer and Search

GLOUP . eooeuoeocososossscsssssscssssosacoscennsssell
Eight-Bit Arithmetic and Logical Group.......23
General Purpose Arithmetic and CPU Control
GLOUPS . coosecssscsaossscssasssscsassonccsonseselD
16-Bit Arithmetic GroUP.v.eeeceeasecoooncseosl
Rotate and Shift GroUP..iicececeseescscesessosolb
Bit Set, Reset, and TeSt GroUP.eeeeescsesesass28
JUMP GLOUP e eooesoessacvonsssecsscsoccannccesesl8
Call and RetUrN GrOUPseasccesovoccoossoncosseall
Input and OUtPUL GrOUP.seeevooeoesoncoscasaesaell

4. The Stack and its AppPlicaAtioNS....ecececcosceonccsssald2

i S A ST
P
U W N

The Stack Area and Stack PoOINter.ceeescocssss3?
PUSH and POP INStruCtionNS.ceeoeecoscesossscessll
Call and Return INStrUCEiONSeseeeoonocsoessesall
Restart INsStructionS..ieecceececscocsscsonsasaldd
Miscellaneous Stack INSEruUCtioNS...oeececesss3d
SUDIOULINES.uoetisocescscoosseacsoncsoossasesald

5. MEMOILY MAP.eeeuasacoosssassassscsossocaassecennnsscassld

5.1

oot
s o e

AU W N

The Level II BaSiC ROMicuieirosvocscsocnseensosdld
Keyboard SubroutineS..seecerescescsscnccnnsandl
video Display SubroutineS.....ceeecssassscsaadl
Cassette SUbroUtineS...cssccesacncceesancosadd?
Miscellaneous I/0 SUDIroOUEIiNES...sesvencsneeesd?
RET VeCtOrS.eeeveeeacancnescnsnceananonansseesdl

1d.

11.

12.

5.7 Level II Basic CommandS..ecoceccccesssscsnosadd
5.8 Dedicated I/0 AdAresSSEScecscssssnscocscnsscasidd
5.9 Keyboard Addressing....eeccceeccsssccssccssesdb
5,10 Video Display MemMOLY.eoeoesoocscsocscsssasnooal’
5.11 The RAM. covooocosoeconoonsaoscasoossansoassccskl

Using the Editor/Assembler program....ccessecscccssssdl
6.1 Editor/Assembler CommandS....ceseesccsocssssodd
6.2 Writing @ Program.ccecececcceoscccosscssoscosssssdd

part II: Practical Programming

Reading and Printing NUmMberS....cececencsososssscssasbl

7.1 Printing a Number in Hexadecimal FOIrM........62
7.2 Printing a Number in Decimal FOIM...cccoses0065
7.3 1Inputting a Number in Hexadecimal Form.......66
7.4 A Sample Program.....coseeceecscssssccsocssesabd?

Organizing Arrays and TableS.eeeocoecacsooscsssosossasssbd
Bol AILBYSeeveocsssssososcnsssssasscnasssnsasssssabd
8.2 ASCII TableS..eeecsvoccooscsssasscconcocsosocelld
8.3 Command TableS.ceeecssscocssssscscansosscsncosld

MOVIiNg DAt@..ececeoecsossossosososcssoscsscscssseasosscnaslbd
9.1 Moving BloCKS.....eccceccosonccsssccosossossslbd
9.2 Filling BloCKSesecescocoansossssossssoscscccsl/9d
9.3 Searching Through BloCKS.....eeeescsassasosso8l

Arithmetic Operations with Integers....esceesocsesosaB3
10.1 8-Bit AdditioN...cscccsocsessnsasocsonsssoonssBd
10.2 Negative Numbers; Two's-Complement

NOtAtioN.eeeeoesocosssososconesanonssssossssald
1.3 8-Bit SUbtractioN....osccssesssocssasscsssscsBdb
18.4 Multiple-Precision Addition and

SUDEractioN.eecoscasssscsscsscnsosssnasssossB8
10.5 Compare OperationS..ccesceeacscssocoscnssseedl
19.6 16-Bit INSEructionS..cscecocscsssncascsssnossdl
10.7 INC and DEC.cocevocscscscsscosonnoncssscsaocnd?

Floating-Point and BCD NumberS...c.csoscsccssscscosses94
11.1 Floating-Point NUMbDErS..eeeescessceasocssessdd
11.2 Binary~Coded-Decimal Numbers....ccoeeoccesss97

Logical and Bit OperationS.csccconsccoscssosssascesslBB
12.1 Logical OperationS...cececececssssccsccccsssal@B
12.2 Bit OperationS..eececcccosenssssssssasssosslf2
12.3 Rotate and Shift InStructionS.cceuiccossessslB2
12.4 Bit Set, Reset, and Test OperationS........185
12.5 BCD OperatioNS.cesesocesscscssncssassscssessll@5

pPreface

This book has grown out of a series of columns that I have
pbeen writing for over a vyear in the TRS-80 MONTHLY NEWS
MAGAZINE (originally called the TRS-80 MONTHLY NEWSLETTER) ,
published by H & E Computronics. Although the columns began
as an attempt to explain various aspects of assembly-language
programming to beginners, it gradually became clear to me that
the incorporation of this material into a single volume would
be more attractive and useful for most readers.

Both beginners and experienced programmers have good reason
to be dissatisfied with the material on assembly-language
programming that has appeared thus far. Most of it is lacking
in some of the essential details that you need to know in
order to understand and to use the TRS-8@, and much of this
literature is very poorly written. wWhile there are some
aspects of the TRS-88 that are still not covered in this book,
such as details about the Level 1II Basic interpreter, it
contains most of the information that you need to Kknow in
order +to develop assembly~language programs, and the book
itself presents numerous practical programs and subroutines
that have been fully tested., It also includes many of those
“secrets” of the ROM and the Disk Operating Systems that Yyou
need to know in order to comprehend fully what goes on inside
the TR5-80.

I would like to express my gratitude to several people who
have helped in the realization of this book: to Howard
Gosman, publisher of the TRS-80 MONTHLY NEWS MAGAZINE, where
the columns first appeared; to John Harding, who provided the
encouragement needed to develop the columns into a book.
Thanks also go to Emory Cook, who gave me many helpful
suggestions. I am also grateful to the numerous readers who
have provided both criticism and ideas for further pursuit.

Hubert S. Howe, Jr.
New City, New York

13. ©Software Multiplication and DivisioNeeeeeeenecannonaolfd?
13.1 8-Bit MultiplicatioN..eeeweeeeoenosooesessol@8
13.2 16-Bit MultiplicatioNe.eeoeeceooscoosessoasalll
13.3 8-Bit DivisSioN.icecoeeooceeaceosooosocosoeesaalld
13.4 16-Bit DivVisSion...eounoosseosecoccoonoesacaallf

l4. Cassette Input and OUEPUL .t e esneescoocacenosocencennsall8
14.1 Cassette ROM SubroutinesS.....eeeeeosoecsseooll®
14.2 Tape FormatS..cioevessocosencoocsnnoanssseslll
14.3 Programming Cassette Input and Output......123

15. USR Subroutines in BasSicC ProgramS....oeeeeececececesossl28
15.1 USR SUbroutineS.eceeeeecocococonoaccocoessssl?8
15.2 Sorting a Series 0f INtegerS.eecscoceeseseelld
15.3 Alphabetizing a Series of StringS..eee.....132

16. Disk Input and OUEPUL . s ecineeecoocncecooosasnnscensslld’d
16.1 Disk BaSiCS.uveeevovocuoeosssoosoncnsensssal3db
16.2 The Disk Operating SYSteM..eceeeceooeeeeese.136
16.3 The Disk Controller.....eeeeeooeseconseese.138
16.4 Disk OPeratioNS.ecescesscecncoscanssncnseesldl
16.5 Disk Input/Output Subroutines.....e.o......142
16.6 TRSDOS Input/Output SubroutinesS............l144

17. DiSK FlleS.uoeuwoeeseoorooesuoonocosocnooseanncessae.l1d6
17.1 The DiSk DireCtoryiueeeeesoeseaceocscesesesldf
17.2 The "GAT" SECLOriueiceeooscesossenccoenncesssld?
17.3 The "HIT" SECEOresceseeescoasososocasanooosssld8
17.4 File Primary Directory ENtrieS....eeesee...149
17.5 File Extension Directory EntrieS.eeee......151
17.6 Passwords and Hash CodeS...evoeeeeeeeoaee..152
17.7 File Structures and TYPeS..eeooeeeceeessss.l54

APPENDIX A: Zilog Tables of Z-88 InStructionS...........l158
APPENDIX B: ASCII/Hexadecimal Conversion Tablesioseooeoo 170
APPENDIX C: Numeric List of Z-80 InStruCtionS...ceeoe...172

APPENDIX D: Alphabetic List of Z-8@ InstructionS........179

APPENDIX E: Selected Bibliography.oeeecoeececooscoanesessl86

JACHINE LA

IGUAGE

1.1 what is Machine Language?

This is a book that has been written in order to explain
machine language or assembly-language programming for the
TRS-80 microcomputer to beginners. It is assumed that vyou
have some familiarity with Level I Basic, and that you will
have access to a TRS-80 with at least 16K memory and Level II
Basic in order to try out programming ideas and examples of
machine code introduced in different chapters.

If you are familiar with Basic, you are probably aware that
the instructions you write in a Basic program are not the same
as what the machine actually executes. Your statements are
decoded in a rather complicated way, and instructions that
carry out the actions you have directed the machine to perform
are executed for you. Basic itself is a program called an
“interpreter” that is written in the machine language of the
Z-80 microprocessor, which 1is the heart of the TRS-84.
“Machine language" refers to a program, like Basic, that is
actively running inside a computer. “Assembly language"
refers to another program that you run called an “"assembler"
that takes individual instructions written in symbolic form
and converts them into machine language.

All computers execute machine 1language and ONLY machine
language. Any other way of interacting with the computer
merely involves providing data to a program running in the

MACHINE LANGUAGE PAGE 2

machine. You may never be aware of what the language is, and
for many situations it would make no difference. In general,
the higher the level of the language being employed by the
computer, the further removed it is from the machine language.
The problem with this process 1is that it takes longer and
longer for the computer to execute each basic operation you
specify. The execution of one line in a Basic program may
require millions or even billions of machine operations.

When you write a program in assembly language, you are
taking advantage of the computer's internal structure so that
what you write can be executed much more efficiently than
instructions in symbolic languages. Execution efficiency is
not the only advantage, however. It is also true that what
the program can do may often be more extensive or elegant than
what programs in higher-level languages can do.

The disadvantage of machine language programming 1is that
you have to understand the structure of the computer in detail
to get it to work for you. A single error can cause an entire
program that works in every other respect not Just to
malfunction, but to do disastrous things 1like erase itself
from memory. Machine-language programming can be messy,
requiring that you remember what is happening within every
single register of the CPU and other things that you would not
ordinarily think about. But it can be very rewarding, both in
terms of performing useful tasks efficiently and in terms of
the understanding and insight you can gain into the machine
through writing a successful program.

In this book, in addition to assuming that you have at
least a 16K Level II TRS-88 computer, we will also assume that
you have Radio Shack's Editor/Assembler program (catalog
number 26-20882), or an equivalent assembler such as Apparat's
EDTASM that comes with NEWDOS+. The Editor/Assembler program
will enable you to assemble programming code discussed in the
book by yourself. If you don't have an assembler, in many
cases you can still POKE program code into memory, or you
might even get by with a machine Jlanguage monitor program
{such as my own Monitors #3 or #4). These allow you to enter
values into memory one byte at a time. in any event, the
content of this book will become clear to you much faster if
you can try out the examples given by assembling them on your
own computer.

To understand machine language, it is essential that you
understand the 2-8¢ microprocessor and the memory of the
TRS-8¢. The 2-8 is the microprocessor around which the
TRS-8F is built. Manufactured by Zilog, Inc., it is one of a
number of popular microprocessors including the 8080 and the

MACHINE LANGUAGE PAGE 3

80¥8, both manufactured by Intel. The Z-80 does everything
that they do and more,

1.2 Basic Components of the Computer

Every computer consists of three basic components: the
CENTRAL PROCESSING UNIT, abbreviated CPU, which for the TRS-8¢
is the Z-88 microprocessor; a MEMORY, usually indicated as
some quantity of “K", where K equals 1¢24; and INPUT-OUTPUT
DEVICES, by which the computer communicates with the outside
world and vice-versa. You are no doubt familiar with most of
the input-output devices of the TRS-8@, and if you don't have
all of them, you have surely seen them in Radio Shack
brochures or in stores. Everyone who has a TRS-89 has a video
monitor, keyboard, and cassette recorder. The video monitor
is an output device that actually displays a small portion of

memnory. The keyboard, which you use to feed data into the
machine, is an input device. The cassette is used both for
input and for output. Other devices include floppy disk

drives, printers, and a variety of specialized equipment such
as the RS-232 interface and voice synthesizer.

1.3 The Memory of the TRS--80

The memory of the TRS-8¢ is contained in both the keyboard
case and the expansion interface. You are no doubt aware that
memory is not free, and so the amount of memory you have
depends on how much you have purchased. The basic unit of
memory in the TRS-80 1s the BYTE, a number consisting of 8
bits or binary digits. A byte is capable of storing values
only between @ and 255; all larger numbers must therefore be
contained in multiples of bytes. The largest value that can
be contained in a two-byte number is 65,535, and this number
is exactly the amount of memory that can be attached to the
Z-80 microprocessor. Each memory location is designated by a
two-byte number called its ADDRESS. Since the zero value Iis
used to indicate the first 1location, there are a total of
65,536 locations. 1In computer jargon, "K* indicates 1¢24 (2
to the tenth power) rather than 1¢¢8. Thus, the TRS-8¢ can
address a total of 64K bytes.

There are three different kinds of memory used in the
TR3-80. First is the ROM or “read-only memory". Values can be
read out of ROM but not written into it, to prevent accidental
data destruction. ROM contains the Basic interpreter, which
is always there as soon as you power up the computer. When
you write a Basic program, it is actually data used by the ROM
program. The LOWER 12K bytes of memory are reserved for ROM.
g to 4495 (4K) is used for Level I, and @ to 12,287 (12K) is
used for Level II.

MACHINE LANGUAGE PAGE 4

The second kind of memory used by the TRS-8¢ is RAM or
“random access memory"“. Numbers can be read or written in
RAM. RAM is used for your programs and data, but not all of
it is available to you. With a Level II computer, the first
822 locations are used by the system for a number of special
purposes that will be explained in detail in chapter 5. (With
Disk Basic, the first 10K of RAM is used!) The TRS-80 uses
only the upper 48K locations, 16,384 through 65,535, for RAM.
This is why the maximum RAM you can purchase is 48K. If you
have 4K RAM, it is located at 16,384 through 26,479; 16K runs
through 32,767, and 32K through 49,152.

That still leaves 4K. The area between 12,288 and 16,383
is used for MEMORY-MAPPED input-output devices. The upper 1K
(15,368 through 16,383) is used for the video display. What
you see on the video display is actually what' is stored 1in
this portion of memory. 14,336 through 14,464 is used for the
keyboard. The rest of this region 1is reserved for other
purposes, and only a few locations have actually been
implemented at this time.

The fact that the video display is memory-mapped means that
anything you put into these locations is immediately sent to
the display. You can try running the following Level II Basic
program to test this out:

19 INPUT A

20 CLS

39 FOR I=1536¢ TO 16383
49 POKE I,A

50 NEXT I

6@ GOTO 19

"A* must be a value between # and 255 (the maximum value that
can be contained in a byte). Then look at Appendix C of the
LEVEL II BASIC REFERENCE MANUAL (Control, Graphics, and ASCII
codes). You will find that the number you input corresponds
to the code that 1is printed across the entire screen; but
when the program finishes, the question mark asking you to
input a new value is still at the upper left corner. Why?

The reason is that you have not issued a “PRINT" statement,
and have thus just bombed the video memory. Now you can see
that the PRINT statement in Basic actually does much more than
just print characters on the screen. It keeps track of where
the cursor is located, and when you come to the bottom of the
screen, it automatically scrolls everything up to the next
line, with the material at the top of the screen disappearing.
in addition, it responds to a number of special characters
called “"control codes", which cause it to do such things as
home the cursor, clear the screen, clear to the end of the

MACHINE LANGUAGE PAGE 5

line, backspace, and so forth. If you had to work all this
out every time you printed something, it would be a mess, and
in this case you would also be duplicating a feature already
implemented in the TRS-8@'s ROM. But now that you understand
that this is all there is to it, you may not be afraid of
working out your own display routine, if you have a reason to
do things differently from the way they are handled in the
ROM.

1.4 Binary and Hexadecimal Numbers

The basic unit of TRS-8¢'s memory is the byte. The value
contained in a specific byte, or the address where the byte 1is
located, can be denoted in three different ways: as a
DECIMAL, BINARY, or HEXADECIMAL number. We are most familiar
with the decimal or base 14 number system, and that is the
code that Radio Shack has used in the LEVEL II BASIC REFERENCE
MANUAL. There is one important difference between the use of
these numbers in Basic and our ordinary use of them: in
Basic, the comma is used as a separator. Thus, if we write
“16,383" in a Basic program, it would actually indicate two
numbers, 16 and 383. To indicate this quantity as one number,
we must write "16383". To avoid this confusion, we will
henceforth always write out five-digit or 1longer decimal
numbers without commas.

In a decimal number, each digit represents a value
multiplied by a power of 14. For example, the number 934
equals 9 times 190 plus 3 times 10 plus 4 times 1. 1In other
number systems, the same relationship exists, except the
digits represent powers of the base number. The digits of
binary numbers represent powers of 2. 1In the binary number
system, each binary digit or “bit" can indicate only a value
of 8 or 1. Binary numbers require a great many digits to be
written out. For example, 100000 binary equals 32 decimal.
Binary numbers are nevertheless important because they
indicate the way numbers are actually represented inside the
computer.,

Because of the length of binary numbers, programmers have
adopted the hexadecimal or base 16 number system. Since 16 is
a power of 2 (the fourth), there is a direct relationship
between binary and hexadecimal numbers: each hexadecimal
digit indicates a 4-bit gquantity. The value contained in any
byte can be expressed in exactly two hexadecimal digits. In
the hexadecimal system, each digit can express a value between
g and 15. The numerals ¢ - 9 are used for those values, while
the letters A - F are used for 1¢ - 15. It may be awkward to
think of something like “FE" as a number, but it is much

MACHINE LANGUAGE PAGE 6

easier to convert this number into binary form than the
equivalent decimal number 254.

To clarify the confusion resulting from the wuse of
different number systems, a letter or subscript 1is sometimes
appended to the number to indicate the number system. "B"
indicates binary and *“H" hexadecimal, and the absence of any
letter indicates decimal. For example, both 1¢@000B and 20H
indicate 32. 1In this book, the H subscript will normally be
appended to hexadecimal numbers unless it is supremely clear
from the context that the discussion involves only hexadecimal
numbers, This is a helpful convention because it is also used
by the TRS-8¢ Editor/Assembler.

(Programmers also sometimes employ another number system,
the octal or base 8 system. It is similar to hexadecimal in
that 8 1is a power of 2 and each digit expresses a 3-bit
guantity, and in some cases easier to recognize because only
the numerals @ =~ 7 are used. Octal is not used often with
byte-addressing computers, and we will not wuse it in this
book.)

1.5 ASCII

Everything 1inside the computer is indicated as a number. It
is what the number represents that determines the difference
between one thing and another. Numbers may represent
instructions to the computer to perform specific actions (a
program), values used in calculations (data), or characters to
be printed (ASCII code).

ASCII stands for “American Standard Code for Information
interchange”. Formulated many years ago and now implemented
in billions of dollars' worth of electronic equipment, it is
the method by which all of the characters are represented
numerically, whether entered from the keyboard or printed on
the video display. Although ASCII is only a 7-bit code, 8-bit
bytes are always used to hold the ASCII values within the
TRS-88. Appendix C of the LEVEL II BASIC REFERENCE MANUAL
lists the correspondences between the characters displayed and
the numerical values. For example, 32 indicates a blank
space, and 65 1is the letter capital-A. Although the TR5-88
can display only upper-case letters on its video monitor, it
can input lower-case letters from the keyboard and hold them
in memory. Lower-case letters are produced by holding down
the shift key as you type a letter -- the reverse of a
typewriter keyboard -- but vyou cannot know that they are
lower—-case letters because they are displayed as upper-case
letters. Furthermore, if you type in a Basic program in lower
case, it will be converted to upper case (although data values

MACHINE LANGUAGE PAGE 7

used by Basic programs are not converted)., The only
discrepancy is with the "@" key. “PRINT @" used with a “shift
@ will not work.

The important point about upper and lower case is that the
TRS~80 is fully capable of COMPUTING with lower-case letters;
it merely can't DISPLAY them. As this is being written,
several companies are offering lower-case modifications, and
Radio Shack itself has Jjust released its own lower-case
modification which unfortunately is incompatible with both the
other methods and software written for them.

The 7-bit ASCII code has room for 128 values, but not all
of these are wused for displayable characters. The first 32
values (9-31) are used for control codes, not all of which are
implemented on the TRS-88. Since the 7-bit values are always
kept in 8-bit bytes, that leaves roow for 128 more values for
other purposes, and these values (128-255) are used for space-
compression codes, tab codes, and graphics.

1.6 Number Formats in Basic

Although numerical values used in computer calculations appear
to be the most straightforward kind of data, they are somewhat
more complicated because most values require several bytes.
Level 1II Basic has three kinds of numerical variables:
integers, single-, and double-precision floating-point
numbers. The simplest numbers are integers, which are held in
two bytes or 16 bits. Because the first bit is used for the
sign (plus is zero and minus is one), the maximum value of an
integer is 32767. There 1is one funny thing about 2-byte
integers, which is also true of all 2-byte values in the 2-80:
the two bytes are stored “backwards" in memory -- that is, the
least~significant byte is stored first, and the
most-significant byte last. To figure out what value is
represented, the order must be reversed. The reason for this
is simply that bytes were stored in this manner in the 89308
and 8084, and the 2-8¢ maintains compatibility with these
microprocessors.

Single- and double-precision floating-point numbers are
kept in groups of four and eight bytes, respectively. The
whole manner in which these calculations are carried out
inside the computer is very complicated, and will not be
discussed in detail in this book. We will nevertheless
explain more about them in chapters 10 and 11.

MACHINE LANGUAGE PAGE 8

1.7 Analyzing Memory

Since everything inside the TRS-8f, or any computer, is stored
in the form of 8-bit bytes, there is no way that you can know
whether they represent a program, data, or ASCII code, without
making an analysis, and this can be very complicated. To help
with making such an analysis, there are programs you can
purchase such as machine-language monitors or disassemblers.

A disassembler is the reverse of an assembler: instead of
assembling symbolic instructions into machine code, it
“disassembles” machine c¢ode into symbolic instructions.

Machine language monitors also provide commands for displaying
the memory in ASCII form or as hexadecimal numbers.

The first part of this book will be devoted to explaining
the technical details about how the Z-80 microprocessor works
and other necessary facts about the TRS-88. The second part
will then be devoted to explaining practical problems that
involve everyday applications for TRS-88 machine language
programs.

THE ARCHITECTURE
OF THE Z-80 CPU

2.1 Registers

The Z-8¢ contains two sets of eight 1internal general-purpose
registers, four 16-bit registers, and two special-purpose
8~bit registers. A REGISTER is a memory location within the
CPU where computation may be carried out. One of the two sets
of eight general-purpose registers is called the MAIN REGISTER
SET and the other is called the ALTERNATE REGISTER SET. The
main set is what you always use in computations. The
alternate set 1is accessed by only two instructions which
exchange the contents of the main set with the alternate set.
The general-purpose registers are called by the names A, F, B,
¢, D, E, Hr and L. A is also called the ACCUMULATOR, and it
is the most important register in the computer, because it is
where most of the action takes place. F is also called the
FLAG register or FLAGS, because it is where bits indicating

various conditions are kept. F itself is never used in
computations. It is automatically set according to the
RESULTS of other computations. The remaining registers B

through L may be used either as 8-bit registers or in PAIRS
for 16-bit quantities. In the latter case, B and C, D and E,
and H and L are always used together, and, in such cases, are
designated as BC, DE, and HL. Figure 2-1 shows a diagram of
the registers in the Z-89 CPU.

MAIN REG SET
N\

ALTERNATE REG SET

4

\/

ACCUMULATOR FLAGS ACCUMULATOR FLAGS
A F A’ F
B [of B’ c’
GENERAL
D E D’ E’ PURPOSE
REGISTERS
H L H’ [
INTERRUPT MEMORY]
VECTOR REFRESH
I R
INDEX REGISTER IX
SPECIAL
> PURPOSE
INDEX REGISTER IY REGISTERS
STACK POINTER SP
PROGRAM COUNTER PC
J
Figure 1: The registers in the Z-80 CPU
Two of the 16-bit registers are called INDEX REGISTERS,
designated IX and 1IY. They are used, more or less, as

pointers to a memory location to which an offset value can be
added or subtracted. The other two 16-bit registers are
called the STACK POINTER and the PROGRAM COUNTER. The program
counter, abbreviated PC, determines the order in which
instructions are executed. When an instruction is being
executed, the PC contains the address of the NEXT instruction

to be executed. A branch or Jjump instruction actually
modifies the PC. The stack pointer, SP, contains an address
that must point to a free area in RAM that 1is wused for
temporary storage of values as the computer is running. If

the stack ever gets destroyed, or if it points to an area in
ROM or nonexistent memory, disaster can occur! The use of the
stack pointer will be discussed in detail in chapter 4.

The remaining 8~bit registers are called the interrupt (I)
and refresh (R) registers. The refresh register makes it easy
and practical to use low-cost dynamic RAM rather than static
RAM in the conputer. The latter RAM also produces
significantly greater heat. (The TRS-80 uses dynamic RAM.)
Otherwise, the refresh register is unimportant from the

10

Z-8@ ARCHITECTURE PAGE 11

programmer's standpoint. The interrupt register provides a
more flexible system of interrupts for the Z-8¢ than the 8@8¢.
Interrupts, however, are used only for more advanced real-time
programming and are beyond the scope of this book.

Perhaps you are wondering about the differences between the
Z-8¢ and the 8#8¢ microprocessors. The 8¢88 has the same
8~bit general registers as the Z-8¢, but no alternate register
set. 1In addition, it has no index registers (IX or 1IY) nor
the interrupt or refresh registers. The instruction set of
the Z-8¢ will, therefore, be much larger than that of the
8488, because it 1includes all of the instructions involving
these registers. There are very few of the remaining
instructions, however, that the 8¢80¢ does not also execute.

In general, it is the programmer's responsibility to keep
track of all the vregisters he 1is using and whether their
contents can be changed without causing the program to produce

an error. The contents of any register pair can easily be
saved and retrieved, by being pushed onto or popped off the
stack. This method can be used to free a register pair for

use in a series of calculations without losing its value. One
of the things that beginners often complain about with
assembly-language programming is that it seems difficult
because there are so many registers to keep track of.
Actually, having many registers is an asset, and programming
the computer is easier than it would be if there were fewer of
them to look after! But there 1is nothing that you as a
programmer can do to change the structure of the CPU, so the
only thing to do is to learn how it works and take advantage
of its inherent properties.

2.2 Instruction Mnemonics and Operands

In describing the instructions executed by nearly all
computers, the term LOAD is used to indicate a transfer of
data between a memory location and a register in the CpPU.
STORE indicates the opposite transfer, from a register to
memory, and MOVE indicates a transfer of data from within the
instruction itself (IMMEDIATE data) to a register. When Zilog
designed the 7Z-80, they decided to scrap some of this
terminology. All instructions that specify a transfer of data
between a register and a memory location on the Z-80¢ are
called LOAD instructions, abbreviated by the mnemonic LD. The
direction of the transfer 1is indicated by the ORDER of the
operands.

If register A 1is loaded from location 188, this would be
specified by the mnemonic:

Z-80 ARCHITECTURE PAGE 12

LD A, (100)

whereas if location 108 were loaded from register A, it would
be:

LD (1998) ,A

The parentheses around l1¢@ are necessary to show that 188 is
the ADDRESS of the memory location involved in the transfer.
Lack of parentheses would indicate a move instruction:

LD A,100

means that A is 1loaded with the VALUE 1008. (The fourth
possibility in this progression, "LD 199 ,A" would be
meaningless. It would indicate that the value 100 were loaded
from A, but doing so might change “188" to some other valuel)

It is very important that you understand the meaning of the
parentheses in these instructions, as this terminology 1is
basic to descriptions of all instructions on the 2Z-808.
Whenever parentheses enclose an operand in a Zilog mnemonic,
it means that the operand specifies an address rather than a
data value. An unparenthesized "HL" specifies the HL register
pair, whereas "(HL)" indicates that the CONTENTS of HL specify
an address which is involved in a data transfer.

What 1is particularly confusing about this terminology is
that the Z-8¢ was designed as an upgrading of the 8088
microprocessor, so that it was 1080 per cent compatible for
executing 8¢8# instructions. Any 8880 program will run on the
7-80, and the 2Z-80 will do much more besides. But in order
for people to transfer their programs to the Z-8¢, a whole new
terminology had to be learned. This upset some people so much
that they invented their own terminology, designed as
extensions of the 8@80's, and implemented it in assembler
programs and documentation. Nowadays, however, most people
use Zilog's terminology, recognizing that it is different from
Intel's. (It has been rumored that Zilog had to invent a new
set of mnemonics for legal reasons, because Intel had
copyrighted its own.) For our purposes, one set of mnemonics
is enough to learn, and the fact that Radio Shack has used
Zilog‘s terminology throughout its documentation and the
Editor/Assembler program more than tips the balance in that
direction.

2.3 Uses of the Registers

The registers of the Z-8¢ CPU must always be considered in
relation to the operations that can be carried out in them.

Z-8@ ARCHITECTURE PAGE 13

Wwhile there are many operations that can only be done in
certain registers, there are many others that can be carried
out in any register. A, the accumulator, is the most
important register. All 8-bit arithmetic and 1logical
operations involve the accumulator containing one of the
operands and the result of the operation. 1In addition, some
instructions that fetch or store a byte in memory only allow A
to be used; getting the byte into or out of another register
requires an additional operation. The flag register F is the
other "half" of the A register. By having F grouped with A in
the CPU, all registers can be treated in two-byte groups.

The HL register pair has two primary uses. First, it is
the "accumulator" for 16-bit arithmetic operations. (There
are no 16-bit logical operations.) All 16-bit arithmetic
operations use HL as one of the operand registers and the
result register. Second, HL can be used to contain an address
pointing to a memory location whose contents are used in an
8-bit operation. Whenever this is done, the operand is
indicated as “(HL)". While the BC and DE register pairs can
sometimes be used in this manner, there are many more Z-80
instructions that involve (HL). (In 8987 mnemonics, (HL) is
specified as M, meaning “memory".)

Both the individual register B and the BC register pair are
often used to hold a COUNT of the number of times something is
to be repeated, so these are sometimes called the “count"
registers. B 1is used as a count with the DJNZ instruction,
the mnemonic for which is supposed to suggest the mellifluous
phrase "decrement B and branch to the location specified if it
is not zero“. The BC register pair is used as a count for all
block transfer instructions -- LDI, LDIR, etc. These
operations are used to move an entire block of memory from one
area to another, and they will be described in chapter 3.
Finally, the C register is the only register used for certain
input and output operations.

The DE register pair has many uses analogous to HL and BC,
except that there are fewer such instructions. Both (BC) and
(DE) can be used to specify addresses 1like (HL), but only
loading to or from the accumulator is possible. Thus,

LD A, (DE)
and

LD (BC) ,A
are legal, but not

LD H, (BC)

whereas

Z-80 ARCHITECTURE PAGE 14

LD H, (HL)

is legal.

2.4 Flags

The flag register F is never used to hold data. It contains
several bits logically called “"flags", that are set according
to the RESULTS of other calculations. It is an eight-bit
register, even though there are only six flags, and only four
of these are really important for most programming
applications. These four flags are called the ZERO flag (2),
the SIGN flag (S8), the CARRY flag (C), and the PARITY/OVERFLOW
flag (p/V). The other two flags, the HALF~-CARRY flag (H) and
the ADD/SUBTRACT flag (N), are used only with the DAA (decimal
adjust accumulator) instruction, which is used only for BCD
numbers, a relatively rare application.

The carry flag C (not to be confused with register C!) is
set whenever an add instruction produces a result that is one
bit too large to be contained in a single register.
Correspondingly, it 1is also set when a subtract operation
produces a borrow. Since the Z-8¢ performs only addition and
subtraction of 8-bit and 16-bit wvalues, the carry flag is
necessary not only for addition and subtraction of larger
values, but also for implementing software routines for
multiplication and division, These operations will be
discussed in <chapter 13. The carry flag is also affected by
shift and rotate instructions, and it is cleared (set to zero)
by logical operations, *“No carry" is indicated “NC".

The zero flag is set only if the result of an operation 1is
zero. “Non zero” is indicated “"NZ*. The sign flag, which is
indicated by the conditions plus (P) or minus (M), is a copy
of the sign bit (7) of the accumulator. The zero, sign, and
carry flags can also be set by compare instructions. The P/V
flag, indicated by the conditions PE (parity even) or PO
(parity odd), is used both for overflow conditions and to
indicate parity, depending on the instruction. Overflow means
that the result of an operation produced a value too large to
be contained in the register, whereas parity means that the
sum of the bits in the register is odd (PO) or even (PE). The
flag 1is also used for other purposes, such as during the
execution of block transfer instructions.

Except for arithmetic, shift, and rotate instructions that
use the carry flag, the flags are USED only by the jump, call,
and return instructions, (They are SET by other
instructions.) These are CONDITIONAL operations that are
executed only if the condition they specify is true.

Z-8¢ ARCHITECTURE PAGE 15

2.5 Addressing Modes

Addressing modes summarize all the ways in which instructions
may be executed on the computer. To perform any operation
involving memory, the computer must kKnow the address of the
location involved. For convenience of programming, there are
always many ways in which addresses may be specified. The
ZILOG Z8¢~-CPU TECHNICAL MANUAL gives ten addressing modes for
the Z-8¢. They can be described as follows:

(1) IMMEDIATE: A byte contained in the instruction is moved
to a register.

Instruction length = 2 bytes.
Example: LD A,l
A is loaded with the value 1.

(2) IMMEDIATE EXTENDED: Same as above, except a two-byte
value is moved to a register pair.
Length = 3 bytes.
Example: LD HL,1000
The HL register pair is loaded with the value 10¢4.

(3) RELATIVE: Applies only to the jump relative (JR)
instructions. The value in the following byte is added
to the location contained in the PC to determine the
next address. The address indicated must lie in the
range -128 to +127 bytes from the present instruction.
Length = 2 bytes,

Example: JR $+10
("$" means “address of the current instruction®.) Jumps
to the location 1@ bytes following the present one.

(4) EXTENDED: The address of the operand is specified in
the instruction.
Length = 3 or 4 bytes.
Example: LD A,(1008)
A is loaded from location 1¢¢0.

(5) INDEXED: The address of an operand 1is determined by
adding a byte called a DISPLACEMENT to the wvalue
contained in an index register.

Length = 3 or 4 bytes.

Example: LD A, (IX+5)

A is loaded from the location whose address is computed
by adding 5 to the value in index register IX.

(6) REGISTER: One register is loaded from another one.
Length = 1 byte.
Example: LD B,C
B is loaded from C.

Z-8@ ARCHITECTURE PAGE 16

(7) IMPLIED: ©Not really a different mode! This means that a
register 1is not indicated in the mnemonic, but
implied by it.

Length: 1 or 2 bytes.
Example: suB B
B is subtracted (from A, by implication).

(8) REGISTER INDIRECT: The address of an operand is
contained in a register pair (BC, DE, or HL).
Length = 1 byte.
Example: LD A, (BC)
A is loaded from the location whose address is contained
in the BC register pair.

(9) BIT: An individual bit in a register is set, reset, or

tested.
Length = 2 bytes.
Example: SET 6,8

Bit 6 in register B is set to 1.

(19) MODIFIED PAGE ZERO: Applies only to the restart (RST)
instructions. Oonly three BITS of the address are
specified in the instruction itself. The address must
be a multiple of 8 between ¢ and 56.

Length = 1 byte.
Example: RST 3
A call is made to location 8.

2.6 Instruction Timing

All microcomputers are run by means of a CLOCK which provides
a basic frequency according to that instructions are executed.
While the clock frequency of the Z-89 can be as high as 4 MHz
(millions of <cycles per second), the TRS-80 uses a clock
frequency of approximately 1.77 MHz, corresponding to a period
of 563 nanoseconds (billionths of a second). The Z-83 CPU
executes its instructions by going through a combination of a
few basic operations. They include memory read or write, I/0
device read or write, and interrupt acknowledge operations.
Each of these may require from three to six clock periods,
which are referred to as T cycles. The basic operations
themselves are referred to as M (machine) cycles.

The TRS—~-8¢ EDITOR ASSEMBLER USER INSTRUCTION MANUAL
discusses each instruction of the Z-8p separately, and
provides information on the number of M and T cycles required.
It also provides a figure of *4 MHZ E.T.", meaning 4 MHz
execution time. This is misleading, because the TRS-88 does
not run at 4 MHz (although the TRS-80 Model 1II does).
Instruction execution times in the manual must be multiplied

Z-80 ARCHITECTURE PAGE 17

by approximately 2.26 in order to determine the actual TRS~80¢
time. The manual shows execution times ranging from 1.0 to
5.75 microseconds (millionths of a second), thus corresponding
to 2.26 to 13 microseconds for the TRS-8#. The fact that the
TRS5-80 can execute over 440,000 operations in one second is a
true measure of its amazing computing power.

OVERVIEW OF THE Z-¢
INSTRUCTION SET

Oonce you are familiar with the registers and internal
architecture of the 2z-8# CPU, the next thing you probably are
wondering about is the operations that the computer can
execute, OQur intention in this chapter is merely to give a
summary of the instructions that the Z-8f can execute -- not
to describe their operation in full. Complete tables of the
7Z-8@¢ instructions are given in Appendix A. Since the really
important point about assembly language programming is being
able to write programs that DO something, it is better to
study the function of individual instructions in the context
of programming examples. The second part of this book is
devoted to practical applications of TRS-8¢ assembly = language
programming.

An operation executed by the computer may affect or be
affected by three different types of items, which are
specified as OPERANDS. Most operations involve the use of one
or more REGISTERS. These include either the main register set
(A, B, C, D, E, H, and L) and the index registers (IX and 1Y),
which are the ones vyou normally think about, or the stack
pointer (SP) and program counter (PC), which you may not think
of as holding data as the others do. The Z-8§ often treats
the operand (HL), which refers to the memory location pointed
to by the H and L register pair, as a single register
analogous to one of the main registers, even though operations
referring to (HL) are always listed as "separate" operations
in the tables. The alternate register set is used by only two

18

OVERVIEW OF THE Z-8¢ INSTRUCTION SET PAGE 19

instructions -- EXX and EX AF,AF' ~- which exchange their
contents with the main register set. Any subsequent
computations are carried out using the main registers only.

The next type of operand might include one or more MEMORY
LOCATIONS in the computer. A few instructions can affect
entire blocks of data, but most affect only one or two bytes.

The third type of operand includes the CONDITION CODES.
Sometimes a condition code is indicated in the instruction
itself, such as a jump on non-zero. At other times, one or
more condition codes are set according to the results of
computations <carried out. It is the latter situation that is
indicated in the instruction tables, since the instructions
that use the condition codes do not alter them.

Other information you might want to know about Z-80
instructions includes how many bytes they occupy, how long
they take to execute (in M or T «cycles), and their object
codes. We will refer to instruction times only by T cycles,
which are 563 nanoseconds for the TRS-88 (250 nanoseconds for
the TRS-8¢ model 1II). This value must be multiplied by the
number of T cycles to determine the actual instruction time.

Many people get confused by the concept of object code,
thinking that there 1is some mysterious force inside the
computer that causes it to run. Actually, it is just a
succession of numbers stored in memory. Since a byte can
contain 256 different values, you might think that there would
be 256 Z-8¢ instructions. In fact, there are many more than
this number because, the Z-8@ has several different
instruction formats requiring from one to four Dbytes. How
many instruction there are depends on how you count. For
example, "LD r,r'" which copies the contents of one register
into another, 1is 1listed as one instruction; but when you
consider that there are seven different registers that may
occupy either position in the instruction, then there are 49
instructions included under this one mnemonic. When you count
instructions in this way, there are 666 of them for the Z-84.

In Zilog's terminology, the ORDER of the operands indicates
the function of the items involved in data transfer
instructions. The first operand is the DESTINATION operand
and the second is the SOURCE. For example, "LD A,B* indicates
that B is copied into A, whereas “LD B,A" indicates that A is
copied into B.

If an operand is enclosed in parentheses, it means that the
operand refers to the CONTENTS of a register or memory
location. Unparenthesized operands denote either IMMEDIATE
DATA or the ADDRESS of a memory location.

OVERVIEW OF THE Z-8# INSTRUCTION SET PAGE 20

Z-80 instructions have been divided into eleven groups by
the manufacturer ZILOG. Most books use this grouping as the
point of departure for discussing the instructions, and we
will do the same here. 1In our listings below, the following
abbreviations will be used:

r single register: A, B, C, D, E, H or L.

IR index register: IX or 1IY.

(IR+d) the contents of an address determined by
adding a displacement byte (d) to an index
register.

s a single register operand, which may be
any of the following: r, n, (HL), or (IR+d).

dd double register: BC, DE, HL, or SP.

qq double register: BC, DE, HL, or AF.

PP double register: BC, DE, SP, and either IX
or 1Y depending on the operation.

n a single byte contained within the
instruction itself.

(n) in input and output instructions, a byte

contained within the instruction, whose value
selects an I/0 port.

nn two data bytes contained within the
instruction itself.

(nn) a two-byte value contained within the
instruction, referring to a memory address.

e in jump relative instructions, a value added

to the current value of the PC to determine
a branch address.

P in RST (restart) instructions, address of the
location called: a multiple of 8 between 0
and 56.

b bit: o, 1, 2, 3, 4, 5, 6, or 7.

cc condition code: NZ, Z, NC, C, PO, PE, P, M.

c condition code in jump relative instruction:
NZ, Z, NC, or C.

(HL) the contents of the memory location pointed

by the HL register pair. Similar use is made
of (BC) and (DE).

I or R the Interrupt or refresh registers.

= This symbol is used to indicate that the

operand on the right is copied to the operand
on the left.

=> This symbol is used in right shift and
rotate instructions, to indicate that the
operand on the left is copied to the operand
on the right.

<=> This symbol indicates that the two operands
are exchanged or swapped.
8088 When indicated in a note field, this means

that the instruction also exists on the 8087
microprocessor,

OVERVIEW OF THE Z-8¢ INSTRUCTION SET PAGE 21

3.1 Eight-Bit Load Group

All the instructions in this group transfer (copy) one byte of
data between two CPU registers, or between a CPU register and
a single memory location. Confusingly, Zilog refers to all
such instructions as “loading", whereas most computer
manufacturers have used "load” only to refer to a transfer
from memory to a register. Moving data from a register to
memory is called "storing“.

Since none of these operands except LD A,I and LD A,R
affect the condition codes, they are not mentioned in the
table below.

Length No. of T
Instruction (Bytes) Cycles Notes Function
LD r,r?! 1 8080 r <= rf
LD r,n 2 7 8389 r <= n
LD r, (HL) 1 7 8080 r <= (HL)
LD r,(IR+d) 3 19 r <= (IR+d)
LD (HL),r 1 7 8089 (HL) <= r
LD (IR+d),r 3 19 (IR+d) <=r
LD (HL),n 2 10 3080 (HL) <= r
LD A, (BC) 1 7 8080 A <= (BC)
LD A, (DE) 1 7 8080 A <= (DE)
LD A, (nn) 3 13 8080 A <= (nn)
LD (BC),A 1 7 8080 (BC) <= A
LD (DE),A 1 7 8080 (DE) <= A
LD (nn),A 3 13 8480 (nn) <= A
LD A,I 2 9 1 A <= I register
LD A,R 2 9 1 A <= R register
LD I,A 2 9 I register <= A
LD R,A 2 9 R register <= A
Notes:

(1) 2 and s flags set according to the results of the
instruction. The interrupt enable flip/flop is copied to the
p/v tlag.

3.2 Sixteen-Bit Load Group
These instructions are similar to the eight-bit loads, except

that sixteen bits of data are involved in the transfer. No
condition codes are affected by these instructions.

OVERVIEW OF THE Z-8@0 INSTRUCTION SET PAGE 22
Length No. of T

Instruction (Bytes) Cycles Notes Function

LD dd,nn 3 19 8080 dd <= nn

LD IR,nn 4 14 IR <= nn

LD HL, (nn) 3 16 8080 HL <= (nn)

LD dd,(nn) 4 20 dd <= (nn)

LD IR, (nn) 4 20 IR <= (nn)

LD (nn),HL 3 16 8080 (nn) <= HL

LD (nn),dd 4 20 {nn) <= dd

LD (nn),IR 4 20 (nn) <= IR

LD SP,HL 1 6 8080 SP <= HL

LD SP,IR 2 10 SP <= IR

PUSH 4qqg 1 11 8080 (sP-2) <= qq(L)
(8P-1) <= qq(H)
SP <= sPp-2

PUSH IR 2 15 (spP-2) <= IR(L)
(SP-1) <= IR(H)
SP <= Sp-2

POP qq 1 19 8080 qq(H) <= (SP+1)
qq(L) <= (SP)
SP <= SP+2

POP IR 2 14 IR(H) <= (SP+1)
IR(L) <= (SP)
SP <= SP+2

3.3 Exchange and Block Transfer and Search

instructions

really

include

two

Group

These different groups:
exchange instructions, which swap two sets of operands, a~d
block transfer and search instructions, which move or compare

large blocks of data. These will be described in more detail
in later chapters, but a summary of their operations Iis
presented here,
Length No. of T
Instruction (Bytes) Cycles Notes Function
EX DE,HL 1 4 8080 DE <=> HL
EX AF,AF! 1 4 AF <=> AF'
EXX 1 4 BC <=> BC'
DE <=> DE'
HI, <=> HL'
EX (SP) ,HL 1 19 8080 H <=> (SP+1)
L <=> (SP)
EX (8P),IR 2 23 IR(1) <=> (SP+1)
IR(2) <=> (8P)
LDI 2 16 1 (DE) <= (HL)

DE <= DE+1
HL <= HL+1
BC <= BC~1

OVERVIEW OF THE Z~80 INSTRUCTION SET PAGE 23

Instruction (Bytes) Cycles Notes Function
LDIR 2 21 1if BCL>O 2 (DE) <= (HL)
16 if BC=g DE <= DE+1
HL <= HL+1
BC <= BC-1
Repeat till BC=g
LDD 2 16 1 (DE) <= (HL)
DE <= DE~1
HL <= HL~1
BC <= BC~1
LDDR 2 21 if BC<O>P 2 (DE) <= (HL)
16 if BC=g DE <= DE~1
HL <= HL-1
BC <= BC-1
Repeat till BC=g
CPI 2 16 3 A compared to (HL)
HL <= HL+1
BC <= BC-1
CPIR 2 21 1f BC<>@ 3 A compared to (HL)
and A<> (HL) HL <= HL+1
16 if BC=g BC <= BC-1
@ or A= (HL) Repeat till A= (HL)
or BC=g
CPD 2 16 3 A compared to (HL)
HL <= HL-1
BC <= BC-1
CPDR 2 21 if BC>@ 3 A compared to (HL)
and A<> (HL) HL <= HL~1
16 if BC=g BC <= BC~1
or A=(HL) Repeat till A=(HL)
or BC=g
Notes:

(1) P/V flag set according to result of operation.
N and H set to =zero.

{2) P/V flag set to @ at conclusion of operation.
N and H set to zero.

(3) P/V flag = g if result of BC-1=8, otherwise pP/V=1.
Z flag is 1 if A=(HL), otherwise g§. N set to 1.
5 and H flag set according to result of compare.

3.4 Eight-Bit Arithmetic and Logical Group

These instructions perform arithmetic and logical operations
on single-byte quantities. Except for the increment and
decrement instructions, all arithmetic is carried out only in
the accumulator, although the operand A is not indicated in

OVERVIEW OF THE Z-8f INSTRUCTION SET PAGE 24

some of the instruction mnemonics. Condition codes are set by
every one of the operations, as explained in the notes. The
symbol “Cy* indicates the carry bit or C flag, which 1is used
in certain arithmetic operations. The full range of
instruction operands is shown only for the ADD instruction.
The number of T cycles and condition codes for individual
instructions of the other operations is the same as for the
corresponding instruction shown for ADD. The logical
operations AND, OR, and XOR are indicated by the words since
the symbols do nt exist on the TRS-88's keyboard.

Length No. of T

Instruction (Bytes) Cycles Notes Function

ADD A,r 1 4 38¢80,1 A<= A+ ¥

ADD Ayn 2 @ 7 8p80,1 A=A +n

ADD A, (HL) 1 7 8p80,1 A <= A + (HL)

ADD A, {(IR+d) 3 19 1 A <= A + (IR+d)

ADC A,s i-3 4-19 8880,1 A<= A + s + CY

SUB s 1-3 4-19 8080,2 A<= A - S

SBC A,s 1-3 4-19 8080,2 A<= A -8 - CY

AND s 1-3 4-19 80849,3 A <= A AND s

OR S 1-3 4-19 8083 ,3 A <= A OR s

XOR s 1i-3 4-19 8083,3 A <= A XOR s

cp s 1-3 4-19 8080,6 A - s

INC r 1 4 8080,4 r<=r + 1

INC (HL) 1 11 8p988,4 (HL) <= (HL) + 1

INC (IR+d) 3 23 4 (IR+d) <= (IR+d)+1
DEC r 1 4 8088,5 r <= r -1

DEC (HL) 1 11 8080,5 (HL) <= (HL) - 1

DEC (IR+d) 3 23 5 (IR+d) <= (IR+d)-1
Notes:

(1y ¢, 8, z, and H set according to the result of the
operation. The P/V flag contains the overflow of the result
of the operation. N set to 0.

(2) Condition codes set as in note 1, except N set to 1. IR

instructions do not exist on the 8¢80.

(3) S, Z, and H set according to the result of the operation.
C and N set to zero. The P/V flag is set 1if the resulting
parity is even, otherwise reset.

(4) All codes set as in note 1, except C unaffected.

(5) All codes set as in note 2, except C unaffected.

(6) Compare operations perform a subtract but leave the

operands unaffected, thus changing only the condition codes,
which are set as in note 2.

OVERVIEW OF THE Z-80 INSTRUCTION SET PAGE 25

3.5 General-purpose Arithmetic and CPU Control Groups
This group includes a bunch of miscellaneous instructions.
The operation of the DAA instruction is too complicated to
describu here, but will be explained in more detail below.

Length No, of T

Instruction (Bytes) Cycles Notes Function

DAA 1 4 8087, 1 Decimal adjust
accumulator

CPL 1 4 8¢89,2 Complement
accumulator (one's
complement: zeros
changed to ones,
ones to zeros.

NEG 2 4 3 Negate accumulator
(two's complement)

CCF 1 4 80(8,4 Complement carry
flag

SCF 1 4 80806,5 Set carry flag

NOP 1 4 8080,6 No operation

HALT 1 4 8084,6 CPU operation

] suspended

DI 1 4 80864,6 Disable Interrupts

EI 1 4 808¢,6 Enable Interrupts

IMm ¢ 2 8 6 Inteérrupt mode ¢

IMm 1 2 8 36 Interrupt mode 1

IM 2 2 8 6 Interrupt mode 2

Notes:

(1) ¢, z, s, P/V, and H flags set according to result of
operation. P/V indicates parity. N unaffected.

(2) ¢C, Z, 8, and pP/V flags unaffected, N and H set to 1.

(3) ¢, 2, 8, P/V, and H flags set according to result of
operation., P/V indicates overflow. N set to 1.

(4) C set according to operation. 2, P/V, and S unaffected.
H unknown, N set to 1.

(5) C set to 1, N and H to ¢#. Z, P/Vv, and S unaffected.

(6) No flags affected.

OVERVIEW OF THE Z-8¢ INSTRUCTION SET PAGE 26

3.6 16-Bit Arithmetic Group

These operations perform arithmetic calculations on 16-bit
quantities. For most of the operations, the HL register pair
is used as an "accumulator" just as the A register is used for
the 8-bit operations. This means that HL is used to hold one
of the operands, and it contains the result after the
operation is executed. The index registers can also be used
in this way for additions.

Length No. of T

Instruction (Bytes) Cycles Notes Function

ADD HL,ss 1 11 8080,1 HL <= HL + ss

ADC HL,ss 2 15 2 HL <= HL + ss + CY
sBC HL,ss 2 15 2 HL <= HL - ss - CY
ADD IR,pp 2 15 1 IR <= IR + pp

INC ss 1 6 848G ,3 ss <= s8s + 1

INC IR 2 10 3 IR <= IR + 1

DEC ss 1 6 84843 ,3 ss <= 85 -~ 1

DEC IR 2 10 3 IR <= IR - 1
Notes:

(1) C set according to the result of the operation. s, Z,

and P/V unaffected. N set to @, H unknown.

(2) ¢, 8, Zz, and P/V set according to the result of the
operation. P/V indicates overflow. N set to 0 for ADC, 1 for
SBC. H unknown.

(3) No flags affected. (N.B.)

3.7 Rotate and Shift Group

These instructions include a large number of operations that
shift or rotate single registers, There are several
redundancies among them, because the Z-80 executes both the
8¢8¢ instructions, which use only the accumulator, and unique
7-8¢ instructions, which use every possible register. All
chifts or rotates move the affected register by only one bit.

A SHIFT operation moves each bit in a register to the next
bit, in a left or right direction, and fills in the vacated
bit with a zero. A ROTATE operation, of which there are far
more than shifts, moves the bit shifted off the end around to
the other side. All of this gets complicated by the way in
which the carry bit participates in the operation. There are
both 8-bit instructions, in which a bit is moved both into or
out of the carry bit and into the register, and 9-bit
instructions, in which the carry bit participates as if it

OVERVIEW OF THE Z-8¢ INSTRUCTION SET PAGE 27

were an extra bit in the register. The N and H flags are
reset by all of these instructions, and the P/V flag indicates
parity. The operation of the RLD and RRD instructions, which
are intended for BCD operations, are too complicated to
describe here, but will be explained in more detail below.

Length No. of T
Instruction (Bytes) Cycles Notes Function
RLCA 1 8480 ,1 Rotate A Ieft circular
CY & bit g <= bit 7
RLA 1 4 8¢80,1 Rotate left accumulator
CY <= bit 7
a bit g <= Cy

RRCA 1 4 8089,1 Rotate A right circular
bit g => CY & bit 7
RRA 1 4 8088,1 Rotate right accumulator

bit g => CYy
CY => bit 7

RLC 2 8 2 Rotate left circular r
(Same as RLCA, but for
any register)

RLC (HL) 2 15 2 Rotate left circular
(HL)

RLC (IR+d) 2 23 2 Rotate left circular
(IR+d)

RL s 2 8~23 2 Rotate left s (Same as

RLA, but for any r,
(HL) , or (IR+d))

RRC s 2 8-23 2 Rotate right circular s
(Same as RRCA but for
any s)

RR s 2 8-23 2 Rotate right s (Same as
RRA but for any s)

SLA s 2 8-23 2 shift left arithmetic s
CY <= bit 7
bit 0 <=8

SRA s 2 8-23 2 Shift right arithmetic s

bit 4 => Cy
bit 7 unchanged

SRL s 2 8-23 2 Shift right logical s
bit ¢ => Cy
g => bit 7
RLD 2 18 3 Rotate digit left
RRD 2 18 3 Rotate digit right
Notes:

(1) C set according to result of operation. 8, Z, and P/V
unaffected.

OVERVIEW OF THE Z-8@ INSTRUCTION SET PAGE 28

(2y ¢, Z, s, and P/V set according to result of operation.
(3) Zz, S, and p/V set according to result of operation. C
unaffected.

3,8 Bit Set, Reset, and Test Group
All of these operations exist only on the Z-8J —-— none on the
8@8#. A BIT operation is a bit test for zero. SET sets a bit

to 1l; RESET sets it to #.

Length No. of T

Instruction (Bytes) Cycles Notes Function

BIT b,r 2 8 1 Bit b in register r
tested

BIT b, (HL) 2 12 1 Bit b in location
(HL) tested

BIT b, (IR+d) 4 20 1 Bit b in location
(IR+d) tested

SET b,r 2 8 2 Bit b in register r
set to 1

SET b, (HL) 2 15 2 Bit b in (HL) set

SET b, (IR+d) 4 23 2 Bit b in (IR+d) set

RES b;,s 2-4 8-23 2 Bit b in s reset
(s may be any r,
(HL) , or (IR+d))

Notes:

(1) 2 set according to result of operation. C unaffected.
§ and P/V unknown. N set to @, H to 1.

(2) No flags affected.

3.9 Jump Group

These instructions branch to a location specified, often
depending on a particular condition. Sometimes the branch
address is contained within the instruction. In the case of
jump relative instructions, the branch address is determined
by adding a displacement value e to the current contents of
the program counter. None of these instructions affects the
condition codes.

OVERVIEW OF THE Z-8@ INSTRUCTION SET PAGE 29

Length No. of T

Instruction (Bytes) Cycles Notes Function
JP nn 3 19 80840 PC <= nn
JP cc,nn 3 19 8080 If cc true, PC <= nn

Continue if cc false

JR e 2 12 PC <= PC + e
JR c¢,e 2 7 Continue if ¢ false
12 If ¢ true,
PC <= PC + e
JP (HL) 1 4 8180 PC <= (HL)
Jp (IR) 2 8 PC <= (IR)
DINZ e 2 B <=8 ~1
8 If B = 0, continue
13 If B<>@, PC <= PC+e

3.180 Call and Return Group

Call instructions push the present contents of the PC onto the
stack and branch to a specified location. Return instructions
pop the <contents off the top of the stack and branch to the
resulting 1location, thus resuming execution from the
instruction immediately following the «call. A restart
instruction is identical to a call, except that the 1location
called 1is specified in only three bits, and must lie within
the first 64 bytes of memory. None of these instructions
affects the condition codes.

Length No., of T

Instruction (Bytes) Cycles Notes Function
CALL nn 3 17 8080 (SP~1) <= PC(H)
(SP-2) <= PC(L)
PC <= nn
CALL cc,nn 3 10 8080 If cc false, continue
17 If cc true,
same as CALL
RET 1 10 8080 PC(L) <= (SP)
PC(H) <= (8SP+1)
RET cc 1 5 8080 If cc false, continue
11 If cc true,
same as RET
RETI 2 14 Return from interupt
(same as RET)
RETN 2 14 Return from non-
maskable interrupt
RST p 1 11 808a@,1 (SP-1) <= PC(H)
(SP-2) <= PC(L)
PC(H) <= @

PC(L) <= p

OVERVIEW OF THE Z-8@ INSTRUCTION SET PAGE 30

Notes:
(1) p must be a multiple of 8 from g to 56.

3.11 Input and OQutput Group

These instructions transfer a byte of data between a CPU
register and an external input/output device, accessed through
an I/0 port specified 1in the instruction. The symbol (n)
indicates that the value n specifies the port, whereas (C)°
indicates that the port number is taken from register C. Some
of these instructions transfer entire blocks of data at a
time. Except for the 8@8@-compatible instructions, the
contents of register B are placed on the top half of the
address bus. This is a negligible factor for the TRS-88@.

Length No. of T

Instruction (Bytes) Cycles Notes Function
IN A, (n) 2 11 8080,1 A <= (n)
IN r,(C) 2 12 2 r <= (C)
INI 2 16 3 (HL) <= (C)
B <= B-1l
HL <= HIL+1
INIR 2 21 if BC<>O 4 (HL) <= (C)
16 if BC=g B <= B-1
HL <= HL+1
IND 2 16 3 (HL) <= (C)
B <= B-1l
HL <= HL-1
INDR 2 21 if BC<>0 4 (L) <= (&)
16 if BC=@ B <= B-1
HL <= HL-1
ouUT (n),A 2 11 8080 ,1 (n) <= A
ouT (C),r 2 12 1 (C) <= r
OUTI 2 16 3 (C) <= (HL)
B <= B-1l
HL <= HL+1
OTIR 2 21 if BC<>H 4 (C) <= (HL)
16 if BC=9 B <= B~1
HL <= HL+1
OuTD 2 16 3 (C) <= (HL)
B <= B-1l
HL <= HL-1
QO'TDR 2 21 if BC<K>0 4 (C) <= (HL)
16 if BC=¢ B <= B-1
HL <= HL-1
Notes:

(1) Condition codes unaffected.

OVERVIEW OF THE Z-8@ INSTRUCTION SET PAGE 31

(2) C unaffected. 8, Z, P/V and H set according to result of
operation. N set to #. P/V indicates parity.

(3) C unaffected, 7 set according to result of operation. N
set to 1. P/V, S8, and H unknown.

(4) C unaffected. Z and N set to 1. Other flags unknown.

THE STACK AND
ITS APPLICATIONS

4.1 The stack Area and Stack Pointer

The STACK is an area in memory where data values from the CPU
registers can be stored and retrieved. The STACK POINTER (SP)
is a 16-bit register in the CPU that contains the address of

the current location that is at the "top" of the stack. The
need for a stack area may seem strange, since data may always
be stored or retrieved by using the LD instructions. Many

earlier computers did not have a stack area. Understanding
the use of the stack 1is crucial to writing any assembly

language program for the TRS-8¢, for if the stack or stack
pointer ever get destroyed, the entire computer will not run!

The idea of having a general area in memory for storing and
retrieving data is a good one, because the need to do this
occurs so frequently when running a program. The stack does
not always reside at any particular area of memory. Where it
is located is determined by the programmer, through the use of
one of the load stack pointer instructions.

The stack is organized as a "last in -~ first out" or LIFO
system. When new values are "pushed” onto the stack, they are
saved “backwards® in memory, and the stack pointer is
decremented by 2. When values are “"popped” out of the stack,
the SP is incremented by 2. This is why the stack pointer
usually points below 1its original wvalue, Figure 4-1
illustrates the way the stack works.

32

THE STACK AND ITS APPLICATIONS PAGE 33

Location Contents Comments
7000 F3 Registers saved here 1if PUSH
7001 gE operation executed.
7002 14 Current top of stack. Contents
7063 26 moved to registers if POP executed.
79004 39 Next level of stack after next POP
7005 8A executed.
SP = 7062 Contents of stack pointer register.

Figure 4-1: Registers are saved in the stack in a "backwards*
order, In this example, the stack pointer SP contains 7¢92.
If a PUSH or CALL operation is executed, register contents are
saved at 70¢1 and 79088, and the SP is decremented by 2. If a
POP or RET is executed, the contents of 7¢¢2 and 7883 are
moved to registers, and the SP incremented by 2.

4.2 PUSH and POP Instructions

All uses of the stack are for double registers only. One of
the primary uses of the stack is through the PUSH and POP
instructions. PUSH saves the contents of a double register in
the stack, and POP retrieves them. You can PUSH or POP AF,
BC, DE, HL, 11X, and IY. PUSH and POP instructions for the
general registers require only one byte of memory (those for
the index registers require two), and the execution of a PUSH
or POP is always faster than a 1load referring to a memory
location. When the values in a register pair are pushed onto
the stack, the registers themselves are unchanged.,

Let us suppose, for example, that the SP contains 4288H.
(The "H" appended to a number means that it is hexadecimal.)
Upon executing a PUSH HL Iinstruction, the computer saves
register H in location 4287H, L in 4286H, and leaves the SP
containing 4286H. As with all double register saves, the
least-significant byte is followed in memory by the most-
significant byte. 1If this instruction were to be followed by
a POP DE, E would be loaded from 4286H and D from 4287H, and
the Sp left pointing to 4288H. Thus, the stack pointer always
contains the address from which data will be popped.

4.3 Call and Return Instructions

Another primary use of the stack pointer is with the CALL and
RETURN instructions. (RETURN is abbreviated RET.) You are
probably familiar with the concept behind CALLS and RETURNS
from the GOSUB and RETURN statements in Basic. A SUBROUTINE
is a portion of a program that can be entered from different
locations, with the ability to return to the location
immediately following the CALL when it is over. Whenever any

THE STACK AND ITS APPLICATIONS PAGE 34

7-8¢ instruction is being executed, the program counter (PC)
points to the NEXT instruction in memory. Thus, when the
computer encounters a CALL instruction, the PC contains the
return address. What happens during a CALL 1is that the
contents of the PC are pushed onto the stack, the SP is
decremented by 2, and the computer branches to the location
specified. when a RETURN is executed, the address is popped
off the stack, the SP is incremented by 2, and the computer
branches to the address. Naturally, if the stack area is used
by the subroutine, the SP must be returned to its original
value before the RETURN is executed. This is one way in which
inexperienced programmers frequently make errors.

Both the CALL and RET instructions of the Z-8@ can be
executed, unconditionally or conditionally, depending on the
conditions NZ, Z, NC, C, PO, PE, P, and M. For example, CALL
NZ,ADR would call the location named ADR only if the condition
NZ were true, and RET NZ would return only on the same
condition. These features greatly enhance the flexibility of
subroutine usage with the 2Z-84.

4.4 Restart Instructions

The RST (restart) instructions are very similar to the CALL
instructions. These one-byte instructions are, in effect,
calls to locations @ through 56 (38H) in multiples of 8. The
reason for this limitation is that only 3 BITS of the address
are included in the instruction itself. (A regular CALL
requires 3 bytes, 2 of which contain the address called.)
Unfortunately, these instructions are not as useful on the
TRS-88 as they are on the Z-8¢ in general, because locations @
through 56 are in ROM (although calls to them are "vectored”
out of ROM as explained in chapter 5). These locations are
already used extensively by the Level I and Level II Basic
interpreters. What you cannot do is write a new subroutine to
be loaded into these memory locations.

4.5 Miscellaneous Stack Instructions

There are several miscellaneous instructions that use the
stack pointer register or the value at the top of the stack.
Three instructions, "D SP,HL“, “LD SP,IX", and “LD SP,IY",
set the SP to some specific value taken from one of the other
16-bit registers (HL, IX, or IY). “LD SP,nn" takes it from
immediate data, and “LD SP,(nn)" takes it from a memory
location. “LD (nn),SP" saves the value of the SP in a memory .
location. The operand SP refers to the ADDRESS of the stack
area, whereas (SP) refers to the CONTENTS of the two locations
at the top of the stack. “EX (SP),HL", "EX (spP) ,IX", and "EX

THE STACK AND ITS APPLICATIONS PAGE 35

(5P) ,IY" swap the values at the top of the stack with the
specified 16-~bit registers. The SP iltself is unchanged by
these operations. “INC SP* increments the stack pointer, and
“DEC sSpP" decrements it. The stack area is also used to save
registers during interrupt processing, but we will not discuss
that here.

4,6 Subroutines

The stack has numerous applications in practically every Z-89
program. The most important of these is undoubtedly the
establshment and wuse of subroutines. Subroutines should
ALWAYS be used when a particular sequence of operations is to
be repeated from more than one location within a program. The
CALL to the subroutine and its associated RET require only
four bytes and 27 machine cycles to execute. The only
conditions that warrant not using a subroutine are that the
operations require four bytes or less, or that the execution
timing is so critical that you cannot spare the 27 machine
cycles (about 15 microseconds).

If you need to use a reglster in which to carry out some
operation, but you also need to retain its present contents,
you can PUSH it onto the stack and POP it off afterwards. For
example, suppose that a subroutine needs to use HL as a
scratch register, but needs to return with the present
contents of HL unchanged. There are two general solutions to
this problem:

CALL SuUB

5UB PUSH HL™

POP HI..
RET

or:
PUSH HL
CALL SUB
POP HL .

In other words, the PUSH and POP can occur either in the
subroutine (usually preferable, since the registers will be
saved for any call) or in the calling program, but they must
occur at the same program level. What you must NOT do is the
following:

THE STACK AND ITS APPLICATIONS PAGE 36

suUB

or:

SuB

In these examples, the SP gets confused
occur at the same level.

and POP do not

PUSH
CALL

POP

CALL
POP

PUSH

HL
suB

HL

suB
HL

HL

because the PUSH
The first example

POPs the return address off the stack rather than the previous

contents of HL,

and the second pushes HL onto the stack, so

that the program will "return“ to the address specified by HL
calling

rather than the
programming technique

S can

location.
be

these
programmer

0f course,
if the

understands what is happening and takes that into account when

writing the program, so that something he

OCCUrs.,

intends to happen

The point is that these are not proper procedures for
storing and retrieving registers.

Another use of PUSH and POP is simply to transfer data from
one register pair to another.

and:

Both require two by

puUSH
POP

LD
LD

tes,

DE
HL

H,D
L,E

and,

although the

The following two sequences of
instructions produce the same result:

latter method

requires only 8 T cycles and the former 22, programmers are as

likely to wuse one
also allows data to be
registers, and it allo
as printing them.

If several regist

otherwise the

method as the other.
transferred to

WS access t

ers

are
subroutine, they must be POPped at the end in

LT e
LAy o

Using PUSH and POP
and from the index

Eom e ovaree b T YN e
LOL Sul L

at the beginning of a
REVERSE order;

data will not go back into the same registers.

The following sequence shows the correct procedure:

THE STACK AND ITS APPLICATIONS PAGE 37

SUB PUSH AF

PUSH BC
PUSH DE
PUSH HL
POP HL
POP DE
POP BC
POP AF
RET

None of the stack operations affects the condition codes
except for POP AF, which loads the flag register with an
entirely different set of conditions. Therefore, the values
of registers can be restored before a conditional operation,
as in the following sequence:

PUSH DE ;save D (and E)

LD D,(TST) ;load D from TST

Cp D jcompare A to D

POP DE ;restore DE to previous values

CALL Z,S8UB ;call 1f compare equal

(In assembly code, anything following a semi-colon is taken to
be a comment.) This small portion of a program saves D and E
in the stack and then 1loads D from a location called TST.
This is compared to the accumulator, and then registers D and
E are popped back off the stack. The CALL is executed only if
the compare was equal, but by the time the CALL occurs, D and
E have been restored to their previous values.

Since all subroutines use the same stack area, any time a
RET 1is executed it will branch to the address at the top of
the stack, regardless of which program executed the last CALL.
Assuming that SUB2 is a subroutine that ends in a RET (as all
subroutines do), the following program sequences are
identical:

SUBl ...
CALL 8sUB2
RET
and:
suBl ...
Jp SUB2

The first SUBl sequence CALLs SUB2; SUB2 does its thing and
returns to SUBIL; and SUBl1 returns to the calling program.
The second SUB1 sequence ends by jumping to SUB2; when SUB2
returns, it goes back to the program that called SUB1.

THE STACK AND ITS APPLICATIONS PAGE 38

what happens if a program tries to call itself? Imagine
this:

5608 CALL 5000

Location 5@@@ contains the first byte of an instruction
that calls location 5@¢@@! When executed, 5883 (the return
address) is pushed onto the stack, the SP is decremented, and
the computer branches to 5¢6¢. Then 5983 is again pushed onto
the stack, and the process continues. This program will have
the effect of repeatedly pushing 5883 onto the stack, thus
destroying all of memory and causing the computer to hang
indefinitely. Actually, the process will continue until
location 5¢6@ is bombed, and then the computer will repeatedly
execute the instructions represented by 54 (LD D,B) and @3
(INC BC).

Because the use of the stack is so flexible, you never need
to worry about where to store data temporarily. Just push it
onto the stack. Always make sure that you know where the
stack is located so that you don't use it for other data. The
best way to accomplish this is always to put a load stack
pointer instruction at the beginning of any program you write.
and don't forget that the computer also uses the stack during
subroutine calls and interrupts, so that you have to keep
PUSHes and POPs on the same levels.

MEMORY MAP

Before you can write an assembly-language program for the
TRS-8¢, you must know the organization of the TRS-88's memory
and how to use the various parts of it. Most TRS-8¢ owners
are familiar with the division of the memory into ROM
(read-only memory), dedicated input/output addresses, and RAM
(random access memory), as shown in the diagram on the
following page. In this chapter, we will examine each of
these three memory areas in detail.

The ROM contains the Level II Basic interpreter, as well as
the software for accessing the principal input/output devices
-—- the keyboard, video display, and cassette recorder. The
main reason for placing software in ROM is so that you cannot
accidentally erase it.

The dedicated input/output addresses contain 1locations
where certain devices are interfaced to the TRS-8¢ through
MEMORY MAPPING. Only the keyboard, video display, line
printer, disk controller, and cassette recorder are connected
in this way. (The cassette recorder also uses port 255.)
Additional devices can be interfaced through I/0 ports.

The RAM is where your programs and data must be located,

but many addresses at the bottom of RAM are reserved for
special purposes. In a non-disk Level II Basic system, 744

39

DECIMAL HEXADECIMAL

ADDRESS ADDRESS
e, T
o 9 LEVEL 1l BASIC ROM

_12237 _____ 2 E_FEH__._,_ (LEVEL | ENDS AT 4095 = @FFFH)
12288 3000H DEDICATED 1/O ADDRESSES
16383 3FFFH
16384 4PPOH RAM

w__294_7_':) _____ 4 EFf_FL___ END OF 4 K RAM
20480 500@H

827e7 JFFFH END OF 16K RAM
32768 800@H
49151 . BFFFH_ . END OF 32K RAM
49152 COogH
05535 FFFFH END OF 48K RAM

Figure 2: Memory map

locations are reserved. When you connect a disk drive to the
TRS-8¢, the software needed to operate the disk must be loaded
off the system drive into low RAM. This area of RAM then
functions as an extension of the ROM, and if you accidentally
destroy 1it, you must reboot the system. The TRSDOS disk
operating system reserves over 5K, and Disk Basic requires an
additional 5K.

5.1 The Level II Basic ROM

The TRS-88 has an unusually large ROM for a microcomputer.
Most micros have just some kind of monitor or operating system
in ROM, containing only the software for accessing the primary
input/output devices. The TRS-8f¢ has all that, but it also
has the Level II Basic interpreter, which is huge by
comparison. Level 1II Basic 1s an extremely complicated
assembly~-language program, written by Microsoft.
Understanding how it works is beyond the scope of this book
and unnecessary. dost of the Level II interpreter is unusable
to assewmbly~language programs, although in chapter 15 we
discuss assembly-language subroutines for Basic programs.

The primary information we need to know about the ROM
concerns the input/output software., We may also be interested
in knowing the general organization of Level II Basic, and how
to find out more about it. The general organization of the
LLevel IT ROM is as follows (all addresses are in hexa-
decimal) :

40

MEMORY MAP PAGE 41

Q00 - @1D8 System initialization and I/0 subroutines
#1D9 -~ Q3E2 Cassette subroutines

@3E3 - @457 Keyboard driver

#458 - 958C Video display driver

#58D - 9673 Line-printer driver

p674 - @73A Initialization code

g78B - 1647 Floating-point math

1688 - 164F Table of entry points for functions
1650 - 1820 Level Il Basic reserved words

~1821 - 1899 Table of entry points for Level II commands
189A -~ 18C8 Unknown

18C9 -~ 18F6 Non-DOS error messages

18F7 - 191C Non-DOS initialization

191D - 1953 Messages

1936 - 2FFF Remaining Level II interpreter

The ROM contains an enormous number of subroutines, but few
of them are useful for assembly-language programs. Those that
are wuseful are summarized below. This list shows the entry
point (in hexadecimal), the registers containing parameters
for the subroutine, the registers used (destroyed), and the
operation of the subroutine. (Subroutines are always entered
by a CALL instruction.)

5.2 Keyboard Subroutines

A@2BH INKEY subroutine: scans the keyboard and returns
zero in A if no key is depressed, else returns a
character. Uses AF, DE.

BO49H INPUT subroutine: scans the keyboard and waits for a
key to be depressed. Returns character in A,
Uses AF, DE.

20408 LINE INPUT subroutine: accepts an entire line of
input terminated by ENTER or BREAK. Displays
characters typed, recognizing control functions
(backspace, etc.,). When called, HL => address of
buffer where text is to be put, B = maximum number
of characters in line. On exit, B = number of
characters typed, including terminator. C set if

"line ends with BREAK. Uses AF, DE.

5.3 Vvideo Display Subroutines
#933H DISPLAY subroutine: prints ASCII character in A

at current cursor position on video display. Cursor
located at 462@H. Uses AF, DE, 1Y.

MEMORY MAP PAGE 42

@ 1C9H CLEAR SCREEN subroutine: Clears screen and homes
cursor. Uses AF.

28A7H TEXT PRINT subroutine: prints all text pointed to
by HL up to a carriage return (ENTER key = 0@DH) or
NULL (@8) at current cursor position, Uses HL, AF.

5.4 Cassette Subroutines

$212H DEFINE DRIVE: selects cassette and turns motor on.
A=f for cassette #1, or 1 for cassette $2. Uses AF.

#1F8H CASSETTE OFF subroutine. Uses no parameters.
p287d write leader and sync byte. Uses AF, C.
P264H write byte in A to cassette.

g296d Read leader and sync byte: locates beginning of
program and positions for reading next bytes. Motor
keeps running. Uses AF.

B 235H Read byte: next byte on cassette returned in A.
User must keep up with cassette speed of 500 baud.

Since all the standard TRS-809 tapes, such as Basic
programs, machine-language object programs, and Basic data
tapes, are written in special formats, you need additional
information to use the cassette. This subject is covered in
detail in chapter 14.

5.5 Miscellaneous I/0 Subroutines

go3BH LINE PRINT subroutine: prints byte in A on line
printer. On exit, Z is set if printer is ready.
Uses AF, DE.

@213d Inputs a byte from an input device. On entry, DE =>
DCB of device, On exit, 7 is set if ready. Uses AF.

P@18H Output a byte to a device. On entry, A=output byte,
DE => DCB of device., On exit, Z is set if device is
ready. Uses AF.

g@234H Qutput a control byte to an I/0 device. On entry,
A = control byte, DE => DCB of device. On exit, Z 1is
set if device is ready, A = status. Uses AF.

MEMORY MAP PAGE 43

go60d Delay loop in l4.66-microsecond increments.
BC = number of delay pulses. Uses AF, BC.

dg66H NMI reset location: Jjumps here on non-maskable
interrupt. 1In effect, halt or reset.

5.6 RST vectors

You may recall from our discussion of the Z-88¢ instruction set
above that the RST instructions have the same effect as a CALL
to locations @ to 56 in multiples of 8. It may appear that
you cannot use these instructions, because the area that they
call is in ROM. Actually, you can use most of them, because
calls to these 1locations are vectored out into low RAM
addresses. These addresses contain Jjumps to yet another
series of addresses that are automatically inserted there by
power on or reset. (A “vector" is simply a jump instruction.)
Nevertheless, all of the restart instructions are used
extensively by Level II Basic, so you must take this into
account when setting up your own routines. RST ¢-32 are used
by Level 1II, and RST 4@-56 by Disk Basic and DOS only. The
operation of RST 48 and RST 56 1s too complicated to describe
in the summary here. The following table shows the vector
addresses and gives a Dbrief description of the Basic
function:

RST RST Jumps
decimal hex to Vector Function
@ gH {(none) (none) Reboot system: power on
or reset.
8 8H 40008 1C96H Byte at HL compared with

byte at top of stack. If
non-zero, SN error.

16 104 4003H 1D78H Increment HL and pass through
string, ignoring spaces or
carriage return. C is set if
next character numeric,
else C is reset.

24 184 4006H 1C90H HL compared to DE. Z is set
if equal, C set if DE>HL.
32 20H 4009H 25D9H 1f double-precision number
C is reset, else C is set.
40 28H 400CH 4BA2H BREAK key vector: Jjumps

here if BREAK key is typed.
48 3gH AQGQFH 44B4H
56 38H 49124 4518H

MEMORY MAP PAGE 44

5.7 Level II Basic Commands

The Level II ROM map shown above does not go into the decoding
of Basic statements. If you are interested in this subject,
the following information will explain how to f£ind out more
about it.

Each of the Level II Basic reserved words is represented
internally by a unique byte, called a "token", with a wvalue
from 8@¢H to FBH. When you type in a Basic program, only the
tokens are stored -- not the complete words you type.
Starting at location 1650H and extending to 1820H is a list of
all the reserved words, in numerical order of the tokens. The
first byte of each word 1is indicated by having bit 7 set,
which is not used in ASCII code. There are two tables of jump
addresses, located at 16¢8H - 164FH and 1822H - 1899H, plus a
third area starting around 24B¢gH, that give the addresses
where each command is executed. If you figure all this out,
you will construct the following table, which 1is shown by
tokens, in alphabetical order rather than numerical:

ABS D9 @977 GOSsuUB 91 1lEB1 READ 8B 21EF
AND D2 25FD GOTO 8D 1EC2 REM 93 1F@7
ASC F6 2AQF IF 8F 2039 RESET 82 0138
ATN g4 15BD INKEYS C9 g19D RESTORE 94 1D91
AUTO B7 2008 INP DB 2AEF RESUME 9F 1FAF
CDBL F1 @ADB INPUT 89 219A RETURN 92 1EDE
CHRS F7 2AlF INSTR C5 419D RIGHTS F9 2A91
CINT EF QA7F INT D8 @B37 RND DE 14C9
CLEAR B8 1E7A KILL AA 4191 RSET AC 419A
CLOAD B9 2ClF LEFTS F8 2A61 RUN 8E 1EA3
CLOSE A6 4185 LEN F3 2A03 SAVE AD 41AQ
CLS 84 @1C9 LET 8C 1F21 SET 83 @135
CMD 85 4173 LINE 9C 41a3 SGN D7 @998A
CONT B3 1DE4 LIST B4 2B2E SIN E2 1547
Cos El 1541 LLIST B5 2B29 SOR DD 13E7
CSAVE BA 2BF5 LOAD A7 4188 STEP CcC 2B@1
CSNG F@ @QABl LocC EA 4164 STOP 94 1DA9
CvD E8 415E LOF EB 4167 STRS F4 2836
CvI E6 4152 LOG DF 9809 STRINGS C4 2A2F
cve E7 1158 LPRINT AF 2867 SYETEM AE (2B2
DATA 88 1F@5 LSET AB 4197 TAB(BC 2137
DEF BD 4158 MEM c8 27C9 TAN E3 15A8
DEFDBL 98B 1E®@9 MERGE A8 418B THEN CA —---
DEFINT 99 1E@3 MIDS FA 2A9A TIMES C7 4176
DEFSNG 9A 1E@6 MKD$ EE 4178 TO BD ———-
DEFSTR 98 1E@0 MKI$ -~ EC 416A TROFF 97 1DF8
DELETE B6 2BC6 MKS$ ED 416D TRON 96 1DF7
pDIm 8A 2608 NAME A9 418E USING BF 2CBD
EDIT 9D 2E68 NEW BB 1849 USR Cl 27FE

ELSE 95 1F@7 NEXT 87 22B6 VAL F5 2ACS

MEMORY MAP PAGE 45

END 8¢ 1DAE NOT CcB 25C4 VARPTR C@ 24EB
EOF E9 4161 ON Al 1FeC + CD 249F
ERL C2 24DD OPEN A2 4179 - CE 2532
ERR C3 24cCr OR D3 25F7 * CF —=—
ERROR 9E 1FF4 our AQ 2AFB / Dg -
EXP E@ 1439 PEEK E5 2CAA ** Dl ———-
FIELD A3 417C POINT C6 @132 > D4 ~——-
FIX F2 @B26 POKE Bl 2CB1 = D5 -——-
FN BE 4155 POS DC 27F5 < D6 —--—-
FOR 81 1CAl PRINT B2 206F ! B ——--
FRE DA 27D4 PUT A5 4182 “ 22 2866
GET A4 417F RANDOM 86 @1D3 & 26 4194

. 2E gEeC

** Ffndicates the up arrow key.

If you want to know more about the ROM, the best thing to
do is to get a disassembler program and look at a disassembled
listing of the ROM. A disassembler 1is the reverse of an
assembler, showing the machine instructions corresponding to
the program stored in memory.

One final word of caution about the ROM is in order: there
are different versions of the ROM that are and have been sold
by Radio Shack. All of the ROMs are functionally identical,
but exactly what the differences are and why different ROMs
are being sold are not known at the time of this writing.

5.8 Dedicated I/0 Addresses

The area from 3@@¢H to 3FFFH is used for direct-memory-access
(DMA) input/output devices. It is organized as follows:

3908 -~ 37DD Unused at present
37E0 Disk drive select latch
(37DE, 37DF, 37EL-37E7 also used for disk)
37E4 Cassette drive select latch
(cassette also uses port FF)
37E8 Line printer
37EC ~ 37EF Disk controller
38990 - 3880 Keyboard addressing
3CP¢ - 3FFF Video display memory

Since the keyboard and video display are so important for
the functioning of the TRS-8@, their operation will be
explained in more detail.

MEMORY MAP PAGE 46

5.9 Keyboard Addressing

Locations 38@¢H - 3BFFH do not exist in the TRS-8@'s memory.
When a 1location there is addressed, the computer actually
reads the keys of the keyboard. Each key depressed causes a
certain bit in a specific location to read "1 rather than
*@". The correspondence between the keys and the memory
locations is as follows:

o (D OOOOO0OE
S OIOIOI01000J0
o (DOOOOOOO®
SIROION0

- DOOOOOOW
- QOOOOOOW
s 9 () 6 (D (D O O €9
-) ()

For example, if you type the "F" key, bit 6 in 1location
38p1 will be set, causing the value at 3801 to read 4¢gH. A
Keyboard-reading subroutine must simply check 1locations 38p1
to 3849 to see 1f there is any non-zero value, and then decode
the bits into the proper letter, checking location 388¢gH to
see 1if the shift or control keys are.pressed. This may seem
like much work, but it actually happens so fast that a
Keyboard-debounce routine has become necessary to prevent

MEMORY MAP PAGE 47

accidental double reading of typed letters. The keyboard
debounce does nothing except insert a delay into the
key-reading process.

5.10 Vvideo Display Memory

The video display memory occupies locations 3C@gH - 3FFFH.
This is a 1K buffer that 1is mapped directly to the 1024
positions of the video display, starting in the upper-left
corner and extending 64 characters across each line for 16
lines. If you store a number in one of these locations, its
ASCII equivalent 1is displayed on the screen. (ASCII tables
are in the LEVEL II BASIC REFERENCE MANUAL, the EDITOR/ASSEM-
BLER REFERENCE MANUAL, and the TRSDOS & DISK BASIC REFERENCE
MANUAL.) Unless your TRS-8# has been modified to display
lower-case letters, bit 6 of the video display memory does not
exist.

If you store a value in video memory that has bit 7 set, it
indicates a graphics character. Graphics divide each cursor
position into six PIXELS. Bits @-5 of the value stored
determine which pixels are set. These bits are mapped into
the graphics as follows:

BITS 7 6 5 4 3 2 1

0
PIXEL ‘ 1 /é/ F E D C B A

A B
C D
E F

GRAPHICS BLOCK

4: Graphics

5.11 The RAM

As we mentioned above, a minimum of 744 bytes of low RAM are
reserved for Level II Basic, and approximately 10K is used in
Disk Basic. All of youR programs and data must go elsewhere.
It is important to have an understanding of what is located in
these reserved addresses. Some of them are used by every
TRS-8f program, whereas others are used only by obscure Basic

MEMORY MAP PAGE 48

commands. Even adding Disk Basic to the system does not
complicate matters that much, for the DOS is loaded from
4499H, and all you need to know is that it functions as an
extension of the ROM, so you shouldn't destroy it. Different
disk operating systems use the memory immediately below this
area in different ways, some of which are incompatible with
other DOSs.

The data control blocks (DCBs) for the three primary 1I/0
devices of the TRS-80 are located immediately following the
jump vectors. These blocks are the keyboard, video display,
and line printer. The concept behind a DCB is very intelli-
gent, and the fact that it is in RAM is also important,
because it enables you to use different software from that in
the ROM. The organization of all DCBs is very similar:

Byte 1: DCB type

Bytes 2~3: driver address

Bytes 4-6: parameters used by the device
Bytes 7-8: identifying letters

The “"driver" for each device is the software that actually
stores or fetches data from it. By patching a different
address pointing to a different driver into these bytes, you
can use non-standard software, such as the keyboard-debounce
routine. When additional devices are added to the TRS-84,
they are often also interfaced through DCBs.

The following table shows the complete organization of low
RAM. All addresses are in hexadecimal. The functions of
addresses which are not indicated are unknown.

4000 RST 8 Jump vectors for RST instructions
40963 RST 16

4006 RST 24

4909 RST 32

498C RST 40

400F RST 48

4012 RST 56

4915 -~ 491C Keyboard DCB

4916 ROM driver address: 83E3H

4018 Device name KI ("keyboard input*)
491D - 40924 Video display DCB

401E ROM driver address: @458H

4020 Cursor location

4922 Cursor character

49023 Device name DO (“"display output®)
4025 - 4g2C Line printer DCB

4026 ROM driver address @58DH

4928 Lines/page

4029 Line counter

402B
402D
4930
4936 - 4083C
403D
4040
4041 - 4046
4041
4044
4047
4949
4050
4952
4054 ~ 4¢5C
4088
4093
4096
4999
409A
4998
4p9¢C
499D
4070
4974
40A6
4977
40AA - 4QAC
409AF

4081
40B3
49B5 - 40D5
40D6
49DC
49DE
40DF
49E1
49E2
40E4
40E6
49E8
40EA
49EC
49EE
40F5
4987
49F9

40FB
4PFD - 4100

MEMORY MAP PAGE 49

Device name PR (“"printer")

Normal return to DOS

Error return to DOS

Keyboard work area

Print-size flag (#=64 char, 8=32 char mode)
25-msec heartbeat interrupt

TIMES storage area

Time: seconds, minutes, hours
Date: year, day, month

Lowest location of usable memory
Highest location of usable memory
FDC interrupt vector
Communications interrupt vector
Reserved

Entry point to USR routines

INP {(input port) routine

QUT (output port) routine

INKEY$ storage

Error code storage for RESUME
Printer-carriage position
Device-~type flag: -l=tape, @=video, l=printer
PRINT# use

Start-of-string space pointer
Start-of-Basic program pointer
Line-cursor position, used for TAB
Input~-buffer pointer

Seed for RND

Number type flag (NTR): 2=integer,
3=string, 4=single, 8=double

Top of Basic memory pointer
String work-area pointer

String work area

Memory size pointer

Used by DIM

Used by PRINT USING

System tape entry-point storage
Auto flag: @=not auto, else auto
Line number

Auto increment

Encoded—~statement pointer
Pointer-to-stack pointer

Used by RESUME

Edit line number

Used by RESUME

Last line number executed

Used by CONT

Pointer to end of Basic program
Also simple-~variables pointer
Arrays pointer

Free space

MEMORY MAP PAGE 50

4191 - 411A variable type declaration table (A-2Z)
2=integer, 3=string, 4=single, 8=double

4118 TRON flag: @=TROFF

411D - 4124 Arith table

4127 - 412E Arithex table

4130 Line-number work area pointer

4152 —~ 41A5 DOS entry points

4152 CvI

4155 FN

4158 Ccvs

415B DEF

415E CVD

4161 EOF

4164 LOC

4167 LOF

416A MKIS$

416D MKS$

4170 MKDS$

4173 CMD

4176 TIMES

4179 OPEN

417¢C FIELD

417F GET

4182 PUT

4185 CLOSE

4188 LOAD

4188 MERGE

418E NAME

4191 KILL

4194 &

4197 LSET

419A RSET

419D INSTR

41A0 SAVE

41A3 LINE

41E8 - 42E7 Input-buffer area

4288 System stack pointer

42E8 Always zero

42E9 Start of Basic program

(Disk Basic programs start at 68BA)

While Basic programs start at location 42E9H, pressing the
reset button causes material to be written into 1locations
433¢H through 4348H, thus making 4349H the first free location
for assembly language programs. When running a Disk system,
7008H is the first free location used neither by Disk Basic
nor by the TRSDOS utilities.

USING THE
EDITOR/ASSEMBLER
PROGRAM

When you think you are finally beginning to understand the
machine instructions for the TRS-8f and are ready to try
writing a program to do something, then you have to consider
the problem of getting the instructions into the computer.
This is where the Editor/Assembler program comes into play.

The Editor/Assembler program was one of the first software
packages sold by Radio Shack. Developed by Microsoft, the
company that wrote Level II Basic, the original program came
with a very helpful book called the TRS-8¢ EDITOR/ASSEMBLER
USER INSTRUCTION MANUAL (catalog number 26-28¢2). This book
is perhaps the most important book anyone planning to write
assembly-language programs for the TRS-8¢ should read. It is
not easy reading, however, and most beginners will get
confused by 1its rather clumsy organization and lack of
sufficient introductory explanatory material.

One drawback of +the original Editor/Assembler program,
which we will henceforth refer to by its shorthand name
EDTASM, was that it allowed programs to be saved only on the
cassette-tape recorder. This worked fine, but it took a 1long
time to read tapes into the computer. A revised version of
EDTASM has been available with Apparat's NEWDOS PLUS which
extends the input-output routines so that they work with
either cassette or disk. This program has a number of other
improvements over the original. Microsoft has also introduced
a similar revision <called Editor/Assembler plus, and many

51

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 52

other assemblers are now available. Whether you have the tape
or disk version, however, the EDTASM program is identical in
all other respects.

When you write an assembly-language program, you have in
mind a specific series of machine instructions that you want
to have loaded into the computer at some particular memory
address, and then executed. There are actually several steps
involved in this process. Let us try to clarify these steps
and introduce some terminology.

The machine instructions to be executed must be written
down in some kind of notation. They are indicated
individually by names called “mnemonics” (pronounced
“nem~on-iks*) . The mnemonics used by the EDTASM program are
the Zilog names introduced above in chapter 3. There are
other sets of mnemonics that have been designed for the Z-80
(mostly as extensions of 8@8¢ mnemonics) that are rather
different from the Zilog notation, but we will not mention
them because we won't be using them.

The starting location in memory at which we want to have
the program assembled is called the "origin" of the program.
This is indicated to the assembler by the ORG
pseudo-operation. ORG is called a “pseudo-operation" because
it 1is not a machine instruction, There are several other
pseudo-operations, such as the END statement, which indicates
the end of the program. The function of a pseudo-op is to
indicate something to the assembler other than a machine
instruction.

The function of the assembler is to translate the mnemonics
that indicate your program into the numerical values that
represent the operations you have specified. £E£ach instruction
is denoted by a unique value for a byte or series of bytes.
Z-80 instructions may be 1 to 4 bytes long. For example, 04
indicates *“INC B" (increment the B register), and 3E, the
first byte of a 2-byte instruction, indicates “LD A,N" (load A
with the value specified in the next byte). These values are
referred to as "machine code", and a particular sequence of
instructions that perform some task 1is a program. The
important point here is that every instruction corresponds to
a number, and the assembler's function is to translate your
mnemonics into those numbers.

The numbers that represent instructions are only one kind
of numerical value handled by the assembler. Others include
data values and addresses. Numerical data wvalues are
self-defining. "3" indicates the value 3. The only possible
confusion is the number system employed. EDTASM's convention
is that all numbers are decimal unless followed by the letters

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 53

H or O, in which case they are either hexadecimal (base 16) or
octal (base 8). “3p* indicates the wvalue 3@, but “3¢gH"
indicates 30 hexadecimal, which is 48 decimal. Addresses and
machine code are always printed in hexadecimal form by the
assembler.

Addresses, which are always two-byte values, indicate the
memory locations at which either the machine instructions or
data they employ are located. When the program is being
assembled, an internal number called the "location counter” is
set equal to the value vyou specify as the origin of the

program. As each instruction 1is assembled, the location
counter is incremented by the number of bytes in the
instruction, You can refer to the location counter by the
symbol “$", to which you can add or subtract values. For

example, the instruction "Jp $+5" indicates a jump to the
location 5 bytes ahead of the value of the location counter at
the beginning of the JP instruction. When using the location
counter, it is necessary to count the number of Dbytes
corresponding to each instruction between the "$" and the
location referred to. You must always jump to the first byte
of an instruction. Otherwise, a disastrous error could
occur,

Addresses are usually referred to by *“labels", which are
symbolic names of one to six letters, written at the beginning
of a program line. When you are writing a program, you do not
normally think about such problems as how many bytes fit
between the area where vyou are currently writing down your
instructions and something you are referring to. When you use
a label, the assembler computes the appropriate value
corresponding to the label and substitutes 1t for every
reference to it within the program.

When your program is written out in mnemonic form, it s
called a “source program*. Once it has been assembled into
machine code, it 1is <called an “object program", The
assembler's function is to translate your source program into
an object program, and then to store the results either on
cassette or disk, from which it can be read into memory. The
assembler can also store your source program in symbolic form
on cassette or disk, and read it back in later. What we need
to understand here is that reading the program into memory is
another step, called "loading®, which must be done after the
assembly is finished. This will be done either with the
SYSTEM command in Basic if the program is stored on cassette,
or with the LOAD or RUN commands in TRSDOS if stored on disk.

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 54

6.1 Editor/Assembler Commands

Assembling the program is only half the Jjob of the EDTASM
program. The other half of its name is "Editor". This means
that EDTASM also contains a text editor, which vyou use when
typing vyour program into the computer. The Editor is simple
and easy to use. All commands are single letters. To type in
your program, you use the I (Insert) command, unless you are
replacing an existing line, in which case you use R (Replace).
I works very much like the AUTO command in Basic. Every line
in the program has a line number, but you don't have to type
the number. It is printed automatically. The default first
line number is 100, and 19 is the default increment between
each line, enabling you to insert up to 9 lines between each
existing line. If you need to insert more, vyou must first
renumber the lines with the N (Number) command, which takes no
more than about a second. While typing the program, the right
arrow can be used as a Tab key, which jumps in groups of eight
spaces.

A group of several successive lines can be indicated by
separating the first and last numbers by a colon. This is
necessary with several commands, such as D (Delete), P
(Print), or H (Hardcopy). ("Hardcopy" means “line print",
while “print” goes to the video display.) The symbols "#" and
“*" can be used in place of the first and last lines, and ".*®
in place of the current line. For example, D1g@:120 deletes
lines 108 through 12¢. P#:* prints the entire program on the
video display.

Once a line has been typed in, you can modify it with the E
(Edit) command. BEdit works exactly the same way as the EDIT
command in Level II Basic. 1In addition to Edit, there is an F
(Find) command that searches through the entire program for a
particular string. If you want to change each occurrence of
it, however, you must do so one-at-a-time.

An entire source program can be saved on tape, or in the
revised EDTASM, on disk. This 1is done by the W (Write)
command, while reading in a previously-stored program is done
by L (Load).

Finally, there is the most important command, A (Assemble).
A has several options, which can be specified 1in any
combination, separated by slashes. The first string following
A (and a space) 1is the name of the object program (this is
used only if the program 1s written to cassette). Other
options are NO (no object tape or file written), NS (no symbol
table printed), LP (line print: assembly printed on 1line
printer rather than video display), NL (no listing: assembles
without printing), and WE (wait on error: pauses whenever an

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 55

error occurs). For example, to assemble your program you
might specify: “A PROG/WE/NS" meaning "assemble the program
now typed into memory, wait if any error occurs, and don't
print a symbol table at the end."

There is one other command: B (Basic), which returns you
to Level II Basic, or to TRSDOS if you have a disk.

During the assembly process, your source program is stored
in memory, and the symbol table, which consists of all the
labels you have used and the addresses where they occur, is
stored backwards starting at the top end of memory. The most
discouraging error vyou can get is "SYMBOL TABLE OVERFLOW",
which means that you don‘t have enough memory to contain the
program and assemble it. Before giving up, however, you can
eliminate your comments and try again.

When you are typing in a program, each line has four
different fields, three of which are optional. The format Iis
as follows:

(LABEL) OPCODE (OPERAND(S)) (; COMMENTS)

Optional fields are 1indicated as being enclosed in
parentheses, Each field is separated by either a space, or
preferably by the right-arrow key, which aligns the fields
vertically. The comments must be preceded by a semi-colon,
and an entire 1line may Dbe comments 1if it begins with a
semi-colon. The LABEL is a symbol whose value is set equal to
the location counter when the line is assembled. The OPCODE
is the mnemonic for the instruction. The OPERAND(S) indicate
the registers or wvalues wused by the opcode, but not all
opcodes have operands. COMMENTS are for your own benefit, so
that you can remember what you are doing.

6.2 Writing a Program

Now that we have described the Editor, let us try to go over
the process of writing a program. In the EDTASM manual there
is an example program that consists of just three steps:
first, it fills the entire video screen with a graphics block.
Second, it waits a few seconds to leave the screen "whited
out“, Finally, it returns to Basic or TRSDOS. We will go
over this program step-by-step, and explain what it does and
how it does it. The program is as follows:

901008 ORG 7909041
90119 VIDEO EQU 3C@eH
60120 START LD HL,VIDEO ;SOURCE ADDRESS

60130 LD DE,VIDEO+1 ;DEST. ADDRESS

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 56

60140 LD BC,400H ; BYTE COUNT

pa159 LD (HL) ,0BFH ;GRAPHICS BYTE
poleo LDIR ;WRITE OUT SCREEN
6a170 ; DELAY LOOP TO KEEP WHITED-OUT SCREEN ON

00188 LD B,5

208190 LP1l LD HL,8FFFFH ;VALUE TO DECREMENT
Bo200 LP2 DEC HL

po210 LD A,H

o220 OR L ;HL=07?

go230 Jp NZ,LP2 ;IF NO DEC AGAIN
pB240 DJINZ LP1 ; DEC.B-~B=07?
20250 Jp (0]] ; RETURN TO BASIC
00260 END START

908278 <BREAK>

This 1listing is taken directly from the EDTASM User's
Manual. The only changes we have made are to name the first
location in the program “START", to include this name on the
END statement, and to change the origin of the program to
7009 so that it will work with both cassette and disk
systems. (The reason for this 1is explained below.) The
comments are those that are in the manual.

The video display is a memory-mapped output device that
automatically displays whatever characters are placed in
locations 3C@@ to 3FFF hexadecimal (153680 to 16383). The
character whose wvalue 1is @BF hexadecimal (191) is a totally
white graphics symbol. 1If you place this character in each of
the locations 3C@@ to 3FFF, you will "white-out" the screen.
This could be done by the following Basic program:

19 FOR I=15368 TO 16383
20 POKE I,191
3@ NEXT I

One way of performing these operations in machine language
would be as follows:

PO100 LD HL, 15360 ;f£irst loc. of screen
po110 LD BC,1824 ;chars. on screen
00128 LD D,191 ;graphics byte to D
¥el3e LOOP LD (HL) ,D ;store D in memory
#0140 INC HL ;point to next loc.
BOL5G DEC BC ;decrement count

pBleo LD A,B ;1 BC=07?

Be178 OR C

00180 JR NZ ,LOOP ;1f non-zero, continue

The first three instructions load various registers with
initial values, but each of the values means something quite
different. HL is 15368, the first location of the video

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 57

memory. BC is 1024, a count of the number of bytes on the
screen. D is 191, the graphics byte that we want to display.
LD (HL),D means that the value in register D is stored in the
location whose address is in the HL register pair. (We used
register D rather than A for this purpose, because A is being
used later in the program, and its value would be destroyed.)
Following this instruction, we increment HL, so that we point
to the next location in video memory, and we also decrement
BC, so that our count is decreased. Whenever a register pair
contains an address of some memory location, we say that it
“points to" that location. There are many instructions that
load or store a byte in the accumulator using a register pair
as a pointer. When this occurs, the register pair is enclosed
in parentheses.

Now comes a slightly more complicated portion of the
program. We want to know if BC is zero vyet, for if it is we
are finished. However, there 1is no Z-8¢ instruction that
tests to see if a double register is zero. We must therefore

use a group of instructions. "“LD A,B" loads the accumulator
with the contents of the B register. Then we perform a
logical OR operation on A with the contents of C. {(Why

couldn't we use B? Because you can do arithmetic and logical
operations only in A, or HL for 2-byte operations.) OR looks
at the wvalue of each bit in each register, and if either of
them is 1, the result is then a 1. Thus, A will be zero only
if both B and C are zero. This type of “programming quickie™
takes a long time to figure out the first time you do it, but
can be used thereafter without your having to think it through
again. The final instruction, “JR NZ,LOOP", jumps to LOOP
only 1f A is non-zero, repeating the process until the entire
video display is blanked out.

If you now look at the original program, you will see that
the above method was not used. Instead, the program used four
*LD" instructions and an "LDIR". The first statement, "VIDEO
EQU 3C@gH", means that the value of 3C@PH (15368) will be
substituted for any occurrence of the symbol VIDEO; 3C@1H
(15361) is substituted for “VIDEO+1". EQU is another
pseudo-operation.

The instructions following the EQU are all in preparation
for the LDIR at the end. LDIR is one of the fanciest
instructions on any microcomputer. It is a block transfer
which uses HL as the source pointer, DE as the destination
pointer, and BC as the count. When executed, it does all of
the following: load the location pointed to by DE with the
value of the location pointed to by HL (in other words, copy
the wvalue of (HL) to (DE)), and decrement BC. If BC is
non-zero, both HL and DE are incremented and the process is
repeated until BC is =zero. LDIR is normally thought of as

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 58

moving one block of data to another block, but here the two
blocks are separated by only one byte. That is why it is
necessary to have the "LD (HL),0BFH" before LDIR. what it
does is to load 3C@P@ with the value @BFH, so that when LDIR
begins (HL) contains that wvalue. Once stored in the next
location and HL and DE are incremented, HL will continue to
point to a location containing @BFH.

The next portion of the example contains the delay loop. A
delay loop is usually implemented by simply loading a value
into a register and decrementing it until it is zero. If you
figure out how long it takes each instruction in the 1loop to
excute (a few microseconds) and multiply this by the count,
you can compute the delay time. In the actual program, there
are two delay loops, one inside the other. One of the loops
uses the HL register pair and the other the single register B.
The loops include lines 180 through 24¢ in the first listing
above.

The inner loop (lines 200#-230) uses the same method we
described above for testing whether the value in HL 1is =zero:
A is loaded from H, and L is ORed to A. 1If the result is
non-zero, the decrementing continues. The original wvalue in
HL is FFFF (65535), the maximum value that can be contained in
a register. It is necessary to indicate this as “@FFFFH",
because the assembler requires any hexadecimal number
beginning with a letter (A-F) to be preceded by a 2zero to
distinguish it from a symbol. This loop delays as long as
possible. (For those of you who want to know exactly how long

this is, it is computed as follows: “DEC HL" requires 6 T
states (basic clock periods), “LD A,H" redquires 4, “OR L" 4,
and "JP NZ,LP2" 140. This is a total of 24 T states. The

basic clock frequency of the TRS-80 1is 1.77 MHz (563
nanoseconds), so the total time for one occurrence of this
loop is 13512 nanoseconds. 65535 occurrences takes about
.88556 seconds.)

The outer loop uses the B register, and the decrementing 1is
done with the DJNZ instruction, which both decrements B and
jumps to the location named LPl if it is non-zero. while we
are discussing this loop, we should notice that the previous
JP (jump) instruction could be replaced by a JR (jump
relative). This would save one byte of memory used by the
program, although the instruction takes slightly longer to
execute (12 T states instead of 18). 1In general, it is better
to use jump relatives (when possible) rather than jumps,
because memory 1is more likely to be the limiting factor than
speed.

The final instruction in the ©program, “JP #", Jjumps to
location zero, which re-boots TRSDOS or Level II Basic. This

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 59

step may not seem important, but it actually is. You must
always consider what is supposed to happen when your program
is finished, and if you don't know what to do, then you should
probably re-boot the system as this program does.

‘The last line of the program, END, has the symbol START in
the operand field. This is the first instruction in the
program that 1is to be executed, which is in line 128. You
should always indicate a starting symbol on the END statement,
since this will be required when the file is stored on disk or
tape. In TRSD0S, you can simply say “RUN PROG" and the
program will execute, and when using the SYSTEM command in
Level II Basic you can just type “/<ENTER>" and it will run;
otherwise, you have to give the starting address in decimal.

Once the program has been typed into the computer, it |is
time to assemble it. We could use a command like “A PROG/WE"
for this purpose. *“PROG" is the name of the program that will
be written on cassette. (If you have the disk version of
EDTASM, you would be asked whether vyou wanted the program
written on «cassette or disk here.) YWE" 1s the "wait on
error* option, which is always a good thing to use. The
assembler's output will appear as follows:

*A PROG/WE

7000 20199 ORG TO000H

3C0P0 #3118 VIDEO EQU 3C@oH

7000 21083C 8128 START LD HL,VIDEO ;SOURCE ADR.

7693 11913cC @8139 LD DE,VIDEO+1 ;DEST. ADDRESS

7006 010004 go140 LD BC,400H ;BYTE COUNT

7009 368BF 28150 LD (HL) ,0BFH ;GRAPHICS BYTE

79088 EDB@ gg160 LDIR ;WRITE OUT SCREEN
001760 ;DELAY LOOP TO KEEP WHITED-OUT SCREEN ON

700D 0645 28180 LD B,5

TYGEF 21FFFF 29199 LP1 LD HL,3FFFFH ;VALUE TO DEC

7812 2B 29209 LP2 DEC HL

7813 7C 20210 LD A,H

7914 BS 00220 OR L HL=07?

7915 C21270 #3230 JpP NZ ,LP2 ;NO? DEC AGAIN

7818 1@F5 p9240 DJINZ LP1 ;DEC.B~--B=g7?

701A C30000 20250 JP gH ;JUMP TO BASIC

7000 gp260 END START

39938 TOTAL ERRORS

LpP2 7012 <This is the symbol table>

LP1 T00F

VIDEO 3C@0

START 7000

READY CASSETTE <Load cassette tape, set to RECORD>
<ENTER>

*

USING THE EDITOR/ASSEMBLER PROGRAM PAGE 60

The hexadecimal numbers in the first column on the left
show either the value of the location counter when that
instruction is being assembled, or the wvalue of the symbol
defined or referred to there. The next column, which varies
from one to three bytes (two to six characters) in our
example, shows the actual machine code. From this point on
(in each 1line), the 1listing Iis identical to our source
program. At the end, the assembler tells us how many errors
we made, and then prints the symbol table in reverse order of
the definition of the symbols. Finally, the program is
recorded on cassette tape. (If we were using disk, this would
happen automatically without our having to do anything here.)
The "*" at the end is the assembler's prompt for an additional
command .

This program is a good introduction to the use of the
Editor/Assembler, but it really doesn't do anything useful for
us. 1In the chapters below we will concentrate on more
meaningful applications of assembly-language programming.

READING AND
PRINTING NUMBERS

Now that we have some understanding of how a program is
written in assembly language, and we know how to use the
TR5-80 ROM subroutines to read the keyboard and print a
character on the video display, we come to the practical
subject of writing a program to do something useful. At this
point we encounter a number of new complexities that must be
reckoned with. Many of the things that we can take for
granted when programming in Basic cannot be done so easily in
machine language.

Foremost among these is number conversions. When we type
in a number at the Keyboard -- say an easy number like 1099 --
we are typing a string of decimal digits. The computer
receives these one at a time, and has no particular reason for
assocliating them and considering them as one number, unless we
tell it how to. Furthermore, the digits that we type are
received by the machine in ASCII format. If we want to use
the number they represent in computations, we must convert
these digits into one hexadecimal value. Once we have done
our computations, we will probably want to display any answers
that we produce in decimal rather than hexadecimal form; but
to print any number requires that we convert the digits to
ASCII form and print them one at a time.

Coping with these problems is, in a nutshell, the subject

of this chapter. Fortunately, we are not the only people who
have ever had to struggle with them, and there are a number of

61

READING AND PRINTING NUMBERS PAGE 62

standard solutions that can be used. Our goal is to be able
to have you get a number into the computer, where you can
operate on it, and back out, where you can see the result.

Let us clarify first that there are many kinds of numbers
employed in a computer. Level II Basic computes with three:
single- and double-precision floating-point numbers, and
integers. We will restrict our consideration in this chapter
to integers, specifically those used by Level II, in which the
total amount can be contained in a two-byte word or register
pair (such as BC, DE, or HL). These numbers have no
fractional values and have a maximum range of -32768 to
+32767, or an absolute value of # to 65535,

When we consider a number in a two-byte word, it is stored
in hexadecimal form. All such numbers are actually stored
*hbackwards” in memory but "correctly" inside any register pair
that contains them. This means that a value like 1023H is
actually stored as 2310 inside memory. This is just a quirk
of the Z-8¢ that is preserved for compatibility with the 8080
and 8p@8, and it really makes no difference except if we go
hunting through memory one byte at a time to find a number.

in this chapter, we will consider only three problems:
inputting a hexadecimal number, and printing a number in
hexadecimal or decimal form. These are difficult enough for
beginners. In later chapters we will consider some of the
problems involved in computing with other kinds of numbers.

7.1 pPrinting a Number in Hexadecimal Form

Suppose that we want to display the hexadecimal value of a
single byte on the video screen. A byte requires exactly two
hexadecimal digits. We must convert these digits to ASCII
form and print them one at a time. To see what we have to do
here, it 1is convenient to refer to a chart showing the
relationship between hexadecimal values and ASCII graphics.
Appendix B gives a complete chart of the ASCII values, but we
will reproduce the relevant portions of it here. In reading
this chart,; the numbers at the top show the most-significant
hexadecimal digit and the numbers going down the left side the
least-significant digit.

READING AND PRINTING NUMBERS PAGE 63

2 3 4 5
[7] space [7] @ p
1 ! 1 A Q
2 " 2 8 R
3 # 3 C s
4 S 4 D T
5 % 5 E U
6 & 6 F \'
7 ! 7 G W
8 (8 H X
9) 9 I Y
A * : J Z
B + : K up arrow
C ’ < L down arrow
D - = M left arrow
E . > N right arrow
F / ? 0 cursor

The 16 possible hexadecimal digits are referred to by the
characters '@' through ‘9' and 'A’ through *'F*'. We can see
that these are in two separate portions of the chart and,
fortunately, they are in a logical ascending order. For
numerical digits, the value of the digit (#-9) plus 3¢H
produces the ASCII representation. For the letters A-F, we
have to add not 39H, but 37H. The simplest way of producing
an ABCII digit is first to add 30H to the hexadecimal digit,
then test to see whether the result ig higher than 39H, and if
so, add 7. Once this is done, we have to perform the same
operation on the other 4-bit hexadecimal digit in the byte.

As we approach this problem, let us consider the machine
operations we will need. To display the first hexadecimal
digit, we have to move the leftmost 4 bits in the byte (8-3)
over to the rightmost 4 bits (4-7). This can be done by
either shifting or rotating the byte four times. There are
wany different Z-8¢ instructions that might be used for this
purpose, but the best ones to use are RRCA or RRA, Dbecause
they are faster than some of the others and require only one
byte. RRCA rotates the accumulator right one bit, with the
bit shifted off the end into both the carry and bit @. The
fact that it is a rotate instruction is irrelevant for our
purpose, but it doesn't matter, because we are going to ignore
bits ¢~3 when we are done.

Once the proper wvalue is moved into bits 4-7, we have to
get rid of whatever remains in bits ¢-3. An AND instruction
is needed here. AND takes two bytes, one in A and the other
either in another register or in a memory location, and
compares them bit-by-bit. Only if a 1 exists in each of the
two bytes is it kept in the result. AND @FH preserves the

READING AND PRINTING NUMBERS PAGE 64

rightmost four bits, because gFH (15) is the hexadecimal
equivalent of §@@#1111 binary, which has ones in the four
right bits.

A complete ASCII display of the hexadecimal value of a byte
is accomplished in the subroutine shown below. It is assumed
that you have appropriately positioned the cursor on the video
display, and that the byte you want to display is in A. DISP
calls the ROM subroutine to display a byte (see Chapter 5).

;subroutine to print hex value of byte on video display

HEX PUSH AF ;save byte
RRCA ;shift
RRCA ;bits -3
RRCA ;into
RRCA ;bits 4-7
CALL HEX2 lst digit
POP AF ;bits 4-7

HEX2 AND gFH ;zap 8-3
ADD A,30H ;0 to 9
Ccp 3AH ;if <32
JR c,pDisp ;display
ADD a,7 ;A to F

DISP CALL 33H ;display
RET ;done

The subroutine ends by falling through to DISP, which
returns to the calling program.

This routine is adequate for displaying a single byte, but
what about larger values? For hexadecimal numbers, the
solution is easy, because all you have to do is load each
byte, one at a time, and call HEX. A subroutine to print the
2-byte value contained in the HL register pair is shown
below:

;display HL in hex on video display

PHLHEX LD A, H ;first H
CALL HEX
LD A,L ;then L
JP HEX

The jump at the end could be eliminated by physically
locating this subroutine immediately before HEX, as we placed
HEX before DISP above. Factors like this should always be
taken into account when considering where to locate
subroutines in memory.

READING AND PRINTING NUMBERS PAGE 65

7.2 Printing a Number in Decimal Form

Printing the value of a number in decimal form is a totally
different kind of problem, because there is no convenient
relationship between decimal digits and the bit positions they
occupy. Since a byte can have a value only from @ to 15,
there 1is no real necessity to have a routine that displays a
single byte in decimal form; but a routine to display a 2-byte
word in decimal form is quite necessary. As we mentioned
above, a 2-byte word can have a value either from =-32768 to
+32767 or from @ to 65535, depending on whether we consider
the first bit to be a sign. In the following discussion we
will implewment the latter method.

In order to display a 2-byte value, we need first to
display the ten~thousands digit, then the thousands, hundreds,
tens, and ones digits. This amounts to five basic steps.
Rather than duplicate the code for each step five times, we
will seek a method that involves one loop that 1is executed
five times with different data. The basic method is to start
with our number (for example, 28672) and subtract 10008 from
it. If the result is positive (18672), we increment a counter
and subtract 1000¢ again (yielding 8672). When the result is
finally negative (-1328), we display the value of the counter
(2, the ten-thousands digit) and add back 10¢dg (8672 again).
Then we start the process over again with 1¢¢¢, and continue
until we have gone through all five digits. The following
subroutine implements this process using register IX as a
pointer to the decimal digits, which are contained in a table
called DECTBL:

jsubroutine to print a 2-byte
;jnumber in decimal form (@-65535)

PDEC LD IX,DECTBL ;IX = pointer
PDEC1 XOR A ;zero A
LD B, (IX+1) ;BC = decimal
LD C, (IX) ;digit
OR A ;zZzap carry
PDEC2 sSBC HL, BC ;subtract BC
JR C,PDEC3 ;digit done
INC A ;else increment A
JR PDEC2 ;continue
PDEC3 ADD HL,BC ;add back
ADD A,30H ;'8 to '9!
CALL DISP ;display
LD A,C ;18 C=1,
Cp 1 ;done
RET Z
INC IX ;else increment
INC IX ;IX twice

JR PDECL ;digit

READING AND PRINTING NUMBERS PAGE 66

DECTBL DEFW 10000 ;table
DEFW 1000
DEFW 100
DEFW 19
DEFW 1

This subroutine assumes that the value to be printed is in
HL wnen it is called. Note that IX points to the decimal
digits, while BC actually contains their values. A is used
for the counter that is incremented each time the subtraction
yields a positive result. Since we are dealing only with
decimal digits, converting to ASCII requires just adding 30H.
IX' must be incremented twice, because each of the values in
the decimal table DECTBL are stored in 2 bytes. This routine
prints leading zeros, and it destroys the previous values of
A, HL, DE, and IX.

7.3 Inputting a Number in Hexadecimal Form

To input hexadecimal digits that represent a single number, we
have a problem similar to what we faced before, but in
reverse. The keyboard reads one digit at a time. This digit
represents a 4-bit quantity inside the number we are creating.
We can either automatically wait to receive four digits, or
more preferably wait for a special character such as ENTER to
signify that the number is finished.

The following subroutine reads the keyboard and builds a
hexadecimal number in the HL register pair, waiting for ENTER
to terminate the number. If we do not type four digits, zeros
will occupy the unfilled positions; and if we type more than
four, only the last four will be kept. Each digit is
displayed as it is typed.

;subroutine to read a hexadecimal
;number from the keyboard into HL

INPUT LD HL,? ;clear HL
INPUT1 CALL KEYIN ;get digit
CP 13 ; ENTER?
RET Z ;1f so, done
CALL DISP ;else disp
Ccp 'ﬂ' ;1f< Igl’
JR C,INPUT1 ;ignore
CP 3AH ;if > '9',
JR C,STRIP ;'0' to '9!
cp ‘Al sif < A,
JR C,INPUT1l ;ignore
cPp el ;if >= 'GY,
JR NC,INPUT1 ;ignore

suB 7 ;A-F: 3A-3F

READING AND PRINTING NUMBERS PAGE 67

STRIP AND 15 ;zap bts ¢-3
ADD HL,HL ;shift HL
ADD HL,HL ;left 4 bits
ADD HL,HL jvery, very
ADD HL,HL ;slowly
LD D,0? ;zZero D
LD E,A ;move A to E
ADD HL,DE ;add digit
JR INPUTL ;hext digit
KEYIN CALL 49H ;ROM keyboard routine
RET ; (see chapter 5)

While this subroutine reads and displays »any character
typed at the keyboard (except ENTER), the character will be
used only if it is a legitimate hexadecimal digit -- 'g' to
‘9" or 'A' to 'F'. This is insured by the series of compares
following INPUTl. If the character is an ‘A' to ‘'F', 7 is
subtracted from the ASCII value, thus creating 3A to 3F. Then
the left four bits are masked out (at STRIP). At this point,
the present contents of HL are shifted left four bits, by
being added to themselves four times in succession. This is
an efficient way to do it, and the ADD HL,HL instruction takes
only one byte. Then the number we have inputed, presently
residing in A, is moved to DE; but since it is only one byte,
it is put into E, and D is cleared. Finally, DE is added to
HL, and the subroutine goes to get the next digit. Note that
the previous contents of DE are lost in this process.

7.4 A Sample Program

The following program reads a hexadecimal number from the
keyboard and prints it in decimal form. It is an endless
loop, always looking for a new number after printing the old
one, so you will have to hit RESET to stop it. You can type
gibberish, but the program will accept only legitimate digits.
The number is also displayed in hexadecimal form. You must
hit ENTER after typing the number.

ORG T000H

START LD A,1CH ;home cursor
CALL DISP
LD A,lFH ;clear video
CALL DISPp
LD A,QEH ;jon cursor
CALL DISP

NEXT CALL INPUT ;get number
CALL SPACE ;print space
CALL PHLHEX ;hex display

CALL SPACE
CALL PDEC ;decimal

SPACE

icopy
icopy
icopy
icopy

READING AND PRINTING NUMBERS

LD A,13 ;print CR
CALL DISP
JR NEXT
LD A, !
JR DISP
PHLHEX here
HEX here
PDEC here
INPUT here

END START

PAGE 68

ORGANIZING ARRAYS
AND TABLES

8.1 Arrays

One of the most important principles of writing good programs
is to organize data items so that they can easily be accessed
for whatever purposes they are to be used. This chapter will
be devoted to methods of organizing tables and arrays so that
they can be searched or processed easily by the z-8¢.

An ARRAY 1is the same thing that a SUBSCRIPTED VARIABLE in
Basic is. It is a group of items organized under a single
heading, because the items usually have something in common
that makes it useful to consider them as a group. Arrays may
have several DIMENSIONS. A one-dimensional array is simply a
LIST. A two-dimensional array is usually thought of as being
organized into columns and rows, like a matrix, and a
three-dimensional array is a group of matrices.

When using the TRS-80@, there are usually just two kinds of
data that are organized into arrays: ASCII data and numerical
data. ASCII data is the same as STRING data in Basic
programs. There are many different kinds of numerical data:
bytes, integers, BCD numbers, and floating-point numbers are
some of the possibilities. Other types of data that might be
used in some applications include graphics code -- actually
numerical data, but of a very specialized kind -- and actual
machine code.

69

ORGANIZING ARRAYS AND TABLES PAGE 79

8.2 ASCII Tables

pata needs to be organized to enable efficient searching
through it. The subject of searching is also discussed in
connection with the block search instructions in chapter 9.
Here, we will go beyond the subject of searching through
single bytes to searching through groups of bytes.

Suppose that we have a list of names, and that we want to
search through them to find a particular one. Here we might
encounter difficulties in distinguishing the beginning and
niddle of a name. For example, consider the following data:

JOSEPH
JOE
L]O

If we enter these items into a table as they appear above, we
see that the letters "JO* appear in each one. One solution is
to allocate a certain number of bytes to each item, and pad
the rest with blanks. (This is the method used by the Disk
Operating System for file names and passwords.) In the
following table, all items have a length of eight bytes:

DEFM '*JOSEPH '

DEEFM 'JOE '

DEFM *Jo !
Now if we search for the succession 'JO t, we will find
it only once. But this method is wasteful of memory space,

and does not allow for names longer than eight characters.
Another solution is to put some special value, such as zero,
or 13, the carriage-return character, at the end of each item
to signify the end:

DEEFM *PHILADELPHIA'
DEFB B

DEFM ‘CHICAGO'
DEFB o

DEFM ‘LOS ANGELES'
DEFB @

This method allows strings of any length to represent an
item, but still “wastes* a byte at the end. A similar
solution is to put a byte indicating the length of the string
at the beginning, following it with the data; but this method
also uses an extra byte, and now we would have to count all
the letters!

An even better method takes advantage of the fact that
ASCII code 1is only seven bits and does not use the sign bit

ORGANIZING ARRAYS AND TABLES PAGE 71

(7). Therefore, as long as we remember to eliminate bit 7
when we get the item out of the table, we can set this bit as
an indication of the beginning of an item:

DEFB 'J'+80H
DEFM 'OSEPH'
DEFB 'H'+80H
DEFM 'ARRY'

DEFB ‘T'+80H
DEFM 'HOMAS'

This table consists of the names *JOSEPH', 'HARRY', and
' THOMAS', but the first character has the sign bit set. (This
method is wused by Level II Basic when it searches for Basic
key words.)

You will probably have more frequent occasion to set up
tables that consist of more than one list, relating the itens
in corresponding positions. For example, the following list
Sets up two data tables, one consisting of the names of items
for sale in a supermarket, and the other prices. 1Items are
separated by the carriage return (13), and the end of the
table is indicated by a 255 control byte:

List 1 List 2

ITEMS DEFM 'EGGS! PRICES DEFM '.69!
DEFB 13 DEFB 13
DEFM 'BREAD' DEFM t.79'
DEFB 13 DEFB 13
DEFM ‘MILK' DEFM .55
DEFB 13 DEFB 13
DEFM 'BUTTER' DEFM '1.95!
DEFB 13 DEFB 13
DEFB 255 DEFB 255

Note that even though the items in the second 1list
represent prices ~- numerical values -~ ASCII data is used.
This makes it easy to print the values, but more complicated
to perform the arithmetic of adding up the bill. If we were
going to use this program for that purpose, we would probably
replace this data with integer or floating-point numbers.

Now let us consider the problem of writing a program to
search through a series of items such as these and to pull out
the price of an item selected. The following short program
inputs a name and places it into a buffer called QUERY. Since
the 1line input subroutine is used, the item name ends with a
carriage return. This is partly the reason we used the CR in
the tables above, which are to be copied into the program at
the end.

;Item -

START
PMSG

ITEM

I'TMLP
I'TMLP2

NOTHIS

NEXT
NEXTD

FOUND

FOUND2Z

MSG

QUERY
ITEMS

PRICES

ORGANIZING ARRAYS AND TABLES

Price Search

ORG
LD
LD
CALL
INC
Cp
JR
LD
LD
CALL
JR
LD
LD
LD
LD
cp
JR
Ccp
JR
INC
INC
JR
INC
LD
Cp
JR
Ccp
JR
JR
INC
INC
LD
cp
JR
INC
JR
LD
CALL
LD
CP
JR
CALL
INC
JR
DEFB
DEFM
DEFS
DEFM

DEFM

T7000H
HL, M5G
A, (HL)
33H

HL

l?l

NZ , PMSG
HL, QUERY
B,20

40H
C,START
HL,ITEMS
B8C,PRICES
DE,QUERY
A, (DE)
(HL)

NZ ,NOTHIS
13

Z ,FOUND
DE

HL
ITMLP2
HL

A, (HL)
13

Z NEXT
255
NZ,NOTHIS
START

HL

BC

A, (BC)
13

NZ ,NEXTD
BC

ITMLP

A 'S
334

A, (BC)
i3
Z,START
33H

BC
FOUND2

PAGE

;print fITEM?'

:ROM display routine
;point to next byte

;did we just print ‘2
;if not keep going
;where to put data

;max length of input
;get line

;1f BREAK, try again
;HL=>items

;BC=>prices

;DE=>test string

;1st char of test string
;compare to 'items' list
;Lry next

;stop at CR in test string
;eurekal

;try next char

;of item & query

;repeat

;on to next item

;test char

; CR?

iyes

:last item

;keep trying

;didn't find - try again
;char after CR

;now inc price list
;price char

; CR?

sNo

;char., after CR

;try now

;print 'S

;before price

;print price

;last char?

iyes

;display

;next char

;print CR before...

;input buffer
;place ITEMS table here

;:place PRICES table here

72

ORGANIZING ARRAYS AND TABLES PAGE 73

END START

If the subroutine does not find the item after comparing
the names, it increments both the item pointer (HL) and the
price pointer (DE) and keeps going. The program 1is an
infinite 1loop, so that it returns and asks you for a new item
whether or not it finds the previous item.

The following code could be used instead of that at NOTHIS
above:

NOTHIS LD A, (HL)
INC HL
cp 13
JR Z ,NEXT
cp 255
JR Z,START
JR NOTHIS
NEXT “es ; (NOT INC HL)

The difference here 1is that the "LD A, (HL)* precedes the
“INC HL", so that the comparison 1is always made with the
previous wvalue. The first time that this occurs, we already
know that A will not be 13 or 255, so the loop is executed one
time unnecessarily. However, this eliminates the need for the
extra “INC HL" after the loop at NEXT. The same change could
be made to eliminate the extra “INC BC" at the end of the next
section of code. In writing TRS-8@ programs, it is generally
preferable to optimize code in favor of using fewer bytes
rather than fewer instruction executions, but this is a choice
that you must make as a programmer. Here, even if we had
thousands of items in the list, the difference in execution
time would not be noticeable.

One complicated aspect of the short program above was that
it had to keep track of two separate tables. This can be
eliminated if the data is organized in a different manner,
such as the following:

DEFM 'EGGSS.69!
DEFB 13

DEFM "BREADS$.79
DEFB 13

DEFM 'MILKS.55'
DEFB 13

DEFM ‘BUTTERS1.95"
DEFB 255

If one table is organized in this manner, the “$" can be
used as a separator between one subfield and the other, and it

ORGANIZING ARRAYS AND TABLES PAGE 74

can also be printed as part of the text. This method would be
valid unless the item names contained imbedded dollar signs --
highly unlikely!

8.3 Command Tables

A problem related to the handling of tables above occurs when
we need to test a series of command letters in order to
perform some action. 1f our commands are represented by
single 1letters, there 1is no problem, for we can just have a
series of:

cp 'S
JP Z ,START
But if we have commands of two or more letters, such as ‘ST’

for STOP and SW for SWITCH, this type of programming gets very
cumbersome. If HL points to the command word, we could:

cp 'S
JR NZ ,NOTS ;1st char not 'S
INC HL ;try next char
LD A, (HL)
cp Tt
Jp Z,STOP ;ST
Cp W
JP Z ,SWITCH ;'sw!
DEC HL ;restore lst char
LD A, (HL)
NOTS RN ;continue

It is much more efficient to set up a table of command
words and addresses, such as the following:

'

COMTBL DEFM 'ST! ;command table
DEFW STOP
DEEFM 'SW'
DEFW SWITCH
DEFB 255

Note the difference between DEFM and DEFW. DEFM defines a
string of ASCII <characters, whereas DEFW defines a WORD
containing the address of the memory location defined
elsewhere in the program. 'STOP' and ‘SWITCH' are the names
of locations that contain the code executing these functions.

This table can be searched, so that the program branches to
the correct control word location if a match occurs, as
follows:

ORGANIZING ARRAYS AND TABLES PAGE 75

LD HL, (COM) ; (COM) contains 2-char com
LD DE,COMTBL ;DE=>command table
LOOK LD A, (DE) ;1st letter to A
INC DE ;point to next letter
cp H ;compare lst letters
JR NZ , TRYNEX ;ho good
LD A, (DE) ;try second letter
Cp L
JR Z,GOTCHA ;both match
TRYNEX INC DE ;2nd letter of command
INC DE ; 2~byte address
INC DE
LD A, (DE) ;last entry in table?
INC A
JR NZ , LOOK ;no
JR DONE ;yes
GOTCHA INC DE ;transfer address
LD A, (DE) ;to HL
LD L,A ;1sb
INC DE
LD A, (DE)
LD H,A ;msb
JPp (HL) ;execute command
DONE oo ;didn't find anything

Note the unusual method that this program uses to test for
the last value in the table. It takes advantage of the use of
the wvalue 255 as the end byte. This value is loaded into A
and A is incremented. If A is now zero, then the previous
value must have been 255 and we are done. This method saves
one byte over the more usual succession:

LD
cp

A, (DE)
255

but the latter method, of course, allows any value to be used

as the end byte.

MOVING DATA

In this chapter we will <cover one of the most important
subjects in TRS-8#¢ assembly language programming: moving data
in memory. This 1is one of the tasks for which the Z-8¢
microprocessor is ideally suited. Before we get 1into it,
however, there 1is one thought that you should always keep in
mind when writing a program: avoid moving data! Write your
programs in such a way that the data is already located where
you will need it. Moving data around can consume much
execution time, especially 1if the nmoves are repeated very
often. Lists and tables can be structured so that you don't
have to go through each item to find something you are looking
for. 1If you do have to move data, though, at least the
programming is simple.

9.1 Moving Blocks

The register pairs BC, DE, and HL, as well as the two index
regsters IX and 1Y, are very important from the standpoint of
moving data within the 'PRS-88, because the address of any
memory location can be contained in exactly a two-byte
guantity. A BLOCK is any group of contiguous bytes in memory.
Suppose that we want to move one block to another. The £first
block would be called the SOURCE BLOCK and the second the
DESTINATION BLOCK. As long as we know the starting address in
each block, it is easier to think of the length or byte count
of the blocks rather than the ending addresses, because both

76

MOVING DATA PAGE 77

blocks are of the same length, even though the ending
addresses are different. To move an entire block of data one
byte at a time, we could load the first byte from the source
block into the accumulator and store it in the destination
block, then decrement the byte counter to see if it is zero.
1f not, we increment the pointers to both blocks and continue.
‘fhe only problem here is that we cannot test for a zero value
in a double register in just one instruction. Suppose that HL
points to the source block, DE to the destination block, and
BC ("byte count") to the length. The method described above
is implemented in the following program, which moves the
bottom 1K of ROM to the video display (try it!):

ORG 7990H
START LD HL, 0 ;source block
LD DE, 3C@ggH ;destination = video memory
LD BC,400H ;length = 1K
LOOP LD A, (HL) ;get byte
LD (DE) ,A ;store in destination block
DEC BC ;decrement length
LD A,B ;BC = @2
OR c
JR Z ,DONE ;if zero, done
INC HL ;point to next locations
INC DE
JR Loop ;continue
DONE CALL 49H ;wait for keyin
JP] ;re-boot system
END START

Only the portion of the program up to DONE is necessary to
move the block. At DONE, the program waits for you to type a
key, then re-boots the system. We will continue to use this
format throughout this chapter.

This routine requires 12 instructions occupying 2¢ bytes.
While it works fine, it turns out that everything from LOOP to
the end can be accomplished by just one Z-8¢ instruction,

LDIR, specifically intended for moving blocks of data. LDIR
also happens to use the same registers we have used in this
example for the same putpesés -- HL points to the source

block, DE to the destination block, and BC to the byte count.
All we have to do is follow the first three instructions above
by LDIR:

ORG 72004
START LD HL, @ ;source block
LD DE, 3CO0H ;destination block
LD BC,400H ;length
LDIR ;move block

DONE CALL 49H ;wait for keyin

MOVING DATA PAGE 78

Jp] sre~boot
END START

LDIR moves (HL) to (DE) without even affecting the
accumulator. This method requires only 11 bytes, and is even
faster than the previous loop method.

LDIR 1is one of the most important Z-8@¢ instructions. It
did not exist on the 8g8¢g. It is part of a group called the
Block Transfer and Search instructions, and there are several
similar instructions that should be mentioned in the same
context,

LDI also moves blocks of data like LDIR, except that only
one byte is moved at a time and the instruction stops. The HL
and DE registers are incremented and BC decremented, and the
end of the loop is signified by the parity/overflow flag being
reset. The reason for using LDI is to stop and do something
else after each byte is moved. To continue to move the block,
the instruction needs to be included in some kind of loop.

As an example of the use of LDI, suppose that we want to
move the first 1K of ROM to the video display as above,; but
that we want to stop at the first occurrence of the byte 'A'.
If this byte is not found, the loop continues until the entire
1K is moved. The following program uses LDI to accomplish
this task:

ORG 7000H
START LD HL,O ;source block
LD DE, 3CQ0H ;destination block
LD LD,400H ;length
LOOP LDI ;move one byte
EX AF,AF! ;save flags
LD A, (HL) ;get next byte
cp ‘A ;is it a2
JR Z ,DONE ;1f zero, yes
EX AF ,AF! ;restore flags
JP PE,LOOP ;continue on parity even
DONE CALL 49H ;walt for keyin
JPp 7] ;re-boot
END START

The exchange AF with AF' instructions are needed to save the
parity/overflow flag while the comparison 1is made. The
compare instruction may reset parity/overflow before the loop
is finished. Rather than having the flags saved in memory,
they are saved in the alternate register set.

LDD and LDDR are the same as LDI and LDIR, except that the
DE and HL registers are decremented rather than incremented

MOVING DATA PAGE 79

during the operation. Instead of setting HL and DE to the
first location 1in each block, you start them out at the last
location. C€C holds the byte count, as before, and it 1is
decremented as with LDI and LDIR. These operations are used
when you want to go through the blocks backwards, such as when
searching for something as in our example of LDI above, or
when you want the values of the HL or DE registers to point to
the locations immediately preceding the blocks when finished.
The following example moves the first 1K of ROM to the video
display and looks for the first occurrence of a '¥Y' to
terminate the move; but the move is carried out backwards,
starting at the bottom of each block.

ORG 7000H
START LD HL, 3FFH ;source block (last address)
LD DE,3FFFH ;destination block
LD HL, 400H ;byte count
LOOP LDD ;move one byte
PUSH AF ;save flags in stack
LD A, (HL) ;get next byte
cp ‘Y’ ;is it a 'y'?
JR Z ,DONE ;1f zero, yes
POP AF ;retrieve flags
Jp PE,LOOP ;continue if parity even
DONE CALL 49H ;walt for keyin
JP @ ;re-boot
END START

In this example, the flags are saved in the stack rather than
in the alternate register set.

It is important to realize that although LDIR and LDDR are
only single instructions, their execution time depends on the
length of the Dblock being moved. They do not operate
instantaneously; they move one byte at a time. Each move
requires five machine cycles, taking 21 T states or 11.823
microseconds on the 'I'RS-8¢. Nevertheless, they are among the
most efficient operations of the Z-8¢.

9.2 Filling Blocks

Filling a block simply involves storing the same value in each
location. For this purpose, it is easy to employ the first
method illustrated above, where a single register holds the
value and one of the register pairs, particularly HL, points
to the locations in the block. We also need another register
pair such as BC to hold a byte count. We cannot use the
accumulator to hold the value to be stored, because it must be
used repeatedly to test whether BC has been decremented to
Zero. The following example fills the video display with a

MOVING DATA PAGE 8¢

completely white graphics block:

ORG 708004
START LD HL,3C@0H ;pointer to video memory
LD BC,400H ;byte count
LD D,@BFH ;graphics block
LOOP LD (HL) ,D ;Store byte
DEC BC sdecrement count
LD A,B ;is BC = g7
OR C
JR Z ,DONE ;if zero, yes
INC HL ;point to next location
JR LOOP
DONE CALL 491 ;walt for keyin
END START

It is important to use HL as a memory pointer whenever
possible, because any register can be stored or loaded using
HL, whereas only the accumulator can be used with DE or BC.
(Any register can also be used with the index registers IX and
IY, but these instructions should not be used when moving data
around in this manner, because they take 1longer and are
intended for different applications.)

while the above method of filling a block is easy enough,
it is also possible to use LDIR or LDDR for the same purpose,
and that method is even easier. The trick 1is to store the
first byte in the block, and then to set the source address to
the value of this byte and the destination to the byte
immediately following. The byte count is set to one less than
the total length of the block. LDIR then moves the byte
indicated by HL (the first byte, &lready stored) to the
address indicated by DE (the next location), and the process
continues until the whole block 1is filled. The following
example also fills the video screen with a graphics block, as
the example above, but uses LDIR to accomplish the task:

ORG 7000H
VIDEO EQU 3Caon ;first video location
START LD HL,VIDEO ;first location

LD DE,VIDEO+1 ;next location

LD BC,3FFH :length

LD (HL) ,0BFH ;store first byte

LDIR ;£ill screen

CALL 49H ;wait

Jp a ;re-boot

END START

MOVING DATA PAGE 81

This program 1is identical to the program illustrating the
use of the Editor/Assembler program in the User's Manual
(Radio Shack catalog number 26-2002).

9.3 sSearching Through Blocks

Searching through memory to f£ind a specific value involves the
same kind of process as moving a block of data, and the Z-80
also has a special group of search operations analogous to the
LDIR group. The most important of these is CPIR. There are
also CpI, CPD, and CPDR. <CPIR requires that you set HL to the
first location of a block and BC to the length. The value to

be searched for 1is 1loaded into the accumulator. Upon
execution of CPIR, each byte in the block is compared with the
accumulator. If a match occurs, the instruction is

terminated. 1If not, the search continues until either a match
is found or the entire block is searched. 1If BC is set to
zero before the instruction begins, the computer will search
through the entire 64K bytes of memory until it finds the
value. when the watch is found, HL contains the address of
the byte following the match, and BC the number of bytes
remaining to be searched. In this manner, the search can be
continued as soon as the processing of the match is completed.
The sign and zero flags are set as a result of the compare,
and the parity/overflow flag 1is reset when BC is finally
decremented to zero.

The following example searches through the entire memory of
the TRS-80 for the value 253 (FD hexadecimal, the first byte
of an 1Y instruction). When one is found, the address of the
location where it is found is displayed (in hexadecimal) and
the search continues.

VALUE EQU @FDH :byte to search for
ORG 7000H
START LD HL, 9 ;first location to search
LD BC, 0 ;length = 64K
LD A,VALUE ;byte to look for
LOOP CPIR ;search
Jp PO,DONE ;if PO we're done, else we have match
EX AF,AF' ;save A & flags
DEC HL ;because HL = next loc
LD A,H ;display HL in hex
CALL HEX
LD A,L
CALL HEX
LD A, ;pPrint space between addresses
CALL 33H ;ROM display routine
INC HL srestore HL

EX AF,AF' ;get back A & flags

MOVING DATA PAGE 82

JR LOOP ;continue
DONE CALL 49H ;wait for keyin

Jp @ ;re-boot
;hex display routine - see chapter 7
HEX PUSH AF

RRCA

RRCA

RRCA

RRCA

CALL HEX2

POP AF
HEX2 AND 15

ADD A, 30H

JR c,DISP

ADD A,7
DISP CALL 33H

RET

END START

To have the program search for another value, simply change
the argument field in the VALUE EQU statement. If you want to
see something amusing, change it to 255 and see what happens!
(If you want to know why this happens, just remember that 255
is the value that vyou get 1in 1locations where no memory
actually exists.)

The other search operations CPI, CPD, and CPDR are
analogous to LDI, LDD, and LDDR. CPI and CPD search only one
byte at a time and stop, and CPD and CPDR search backwards
through memory. While we will not demonstrate their use here,
you can probably imagine situations where they might be
preferable to CPIR. In any event, it is easy to see the
usefulness of these operations.

ARITHMETIC OPERATIONS
WITH INTEGERS

One of the most important limitations of all 8-bit
microprocessors is their ability to perform only a few
arithmetic operations. The Z-8¢ instruction set includes only
the operations of addition and subtraction of 8-~ and 16-bit
numbers. (The Z-8¢ 1is an improvement over the 8¢8¢, which
does not include a 16-bit subtract operation!) This means
that almost all computation =-- not only multiplication and
division, but also addition and subtraction of larger
quantities -~ must be carried out in rather complicated
subroutines which perform repeated additions and
subtractions.

The question of the form in which the numbers are
represented in memory is thus of crucial importance. For the
TRS-80, there are really only two sets of number formats to
consider: those provided 1in the 2Z-8¢ instruction set, and
those in Level II Basic. Other formats can be implemented for
various reasons, such as to achieve greater precision.

83

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 84

18.1 8-8Bit Addition

The basic 8-bit arithmetic operations require the use of
the accumulator to hold one of the operands and the result of
the operation. The operations are as follows:

ADD A,r Adds the contents of register r to A.

ADD A, (HL) Adds the contents of the location
whose address is in HL to A.

ADD A,n Adds the value n to A,

ADD A,(IR+d) Adds the contents of the location

(IX+d) or (IY+d) to A,

The condition codes are set to reflect the results of the
operations. 1If zero is produced, the Z flag is set. The sign
flag is copied from the sign bit of the accumulator.

What happens if the result produced is too large to be
contained in the accumulator? Let us clarify this situation
through an example. If we add the two largest possible
numbers together, 255 + 255 = 518, we find that 510 is too
large to be contained in a single byte. Any result that can
be obtained through the addition of two bytes requires at most
one extra BIT, and what the Z-8¢ does is to put this bit into
the carry flag. The P/V flag is also set to indicate an
overflow (which would be detected through the use of the PO
condition, because this is the same as odd parity). This
operation can be illustrated as follows:

register binary hexadecimal decimal
A 1111 1111 FF 255
B 1111 1111 FF 255
Carry 1 A 1111 1119 FE 254

Since the carry bit occupies the position of the ninth bit,
its wvalue is 256, which, when added to 254, gives the correct
result of 5148.

This extra bit of precision can now be used in subsequent
operations, to propagate the correct result into other bytes,
which, when grouped with the original byte, are large enough
to hold the correct result. To carry out this propagation,
there 1is another set of operations that add or subtract the
carry bit along with the two bytes. These operations are as
follows:

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 85

ADC A,r Adds A + r + carry

ADC A, (HL) Adds A + (HL) + carry

ADC A,n Adds A + n + carry

ADC A, (IR+d) Adds A + (IX+d) + carry
or A + (1Y+d) + carry

Some of the applications of these operations are illustrated
below in the multiple-precision operations.

19.2 Negative Numbers; Two's-Complement Notation

Thus far, we have been discussing the wvalues contained in
bytes as if they all represented positive or absolute values.
In fact, they often represent negative values, and the Z-8¢
has a special way of indicating negative numbers. As we
discuss this subject, it is important to keep in mind that
several bytes are often grouped together to contain large
values, and in this case only one sign applies to the entire
group of bytes,.

First, negative numbers are represented by considering bit
7, the leftmost bit, to be a SIGN. @ indicates a positive
number and 1 a negative number. Only 7 bits are then left to
hold the wvalue of the number. Second, negative numbers are
represented in a form called TWO'S-COMPLEMENT NOTATION.

If the sign of a byte 1is positive, the 7 bits of data
simply indicate the value of the number, which can thus range
from (+) @ to 127. For example, if the bits in a byte read
#0911 @016, the wvalue is 32 hexadecimal which equals 50
decimal. You might think that if you changed the sign bit to
1 the number would represent -5¢, but in fact this is not the
way that two's-complement notation works. To understand two's
complement, you must first understand the ONE'S COMPLEMENT.
The one's complement of a binary number is formed by changing
all the zeros to ones and ones to zeros. This is easy. In
our example, the one's complement of @g@ll 0010 is 1160 1101.
To form the two's complement, you add 1 to the one's

complement. The two's complement of 4011 9¢18¢ is thus 1100
1111 Let us illustrate this process in a couple of

examples:

(a) Find the two's complement of +96 (60 hexadecimal):

hexadecimal binary
60 2110 0009 given number
9F 1g@1 1111 one's complement
+ 1 add 1

AQ 1019 6000 two's complement

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 86

(by Find the two's complement of +127 (7F hexadecimal):

hexadecimal binary
TF glil 1111 given number
80 10090 0000 one's complement
+ 1
81 1000 0001 two's complement

The curious thing about two's-complement notation 1is that
the wvalue of MINUS ZERO does not exist. Instead, -128 does.
The complete range of signed values for bytes is thus -128 to
+127.

Since negative numbers are so important, the 2Z-80 has a
separate instruction, NEG, that produces the negative
equivalent of a byte. There is also a CPL instruction that
produces the one's complement. (CPL exists on the 8¢80, but
NEG does not.)

Why do computers use two's-complement notation? The reason
is that it simplifies the operation of arithmetic
computations. Any combination of additions and subtractions
will work. When two's-complement notation is used, the sum of
a number and its negative value is always 256, which comes out
to be zero when the extra bit shifts into the carry. Thus,
whether bytes represent values of -128 to +127 or § to 255 is
entirely a way of interpreting the number. Sometimes you <can
decide to use the sign and other times not to.

19.3 8-Bit Subtraction

Now that we understand negative numbers, let us consider the
8-pbit subtraction operations. They parallel exactly the 8-bit
addition operations:

suB r Subtracts the contents of r from A,

SuUB (HL) Subtracts the value in (HL) from A.

suB n Subtracts n from A.

SUB {(IR+d) Subtracts the value in (IX+d) or
(IYy+d) from A.

sBC A,r Subtracts r and the carry bit from A,

SBC A, (HL) A - (HL) - carry

SBC A,n A - n - carry

SBC A, (IR+D) - (IX+d) - carry or

A
A - (Iy+d) - carry

Why is A indicated as an operand with SBC and not with SUB?
The rule is that A must be indicated as the first operand
whenever there is another possible Z-8§ instruction that uses
another first operand. In this example, "“SBC HL,DE" 1is a

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 87

possible operation, but “SuUB HL,DE" is not. There is a l16-bit
SBC operation, but no 16-bit SUB operation. Another point to
note is that, when dealing with subtract operations, it is
more relevant to think of the carry bit as a “borrow” rather
than as a carry, but the letter C is what is indicated in the
mnemonic.

If we consider some examples of subtraction operations, we
can see the way that the two's-complement notation works:

(a) Subtract 20 from 8 (8 - 20 = -12)

The easiest way to explain the functioning of this
operation is to do it the same way that you would if you were
doing the arithmetic by hand: note that -20 is of greater
magnitude than 8, and therefore subtract 8 from 20 and negate
the answer:

hexadecimal binary decimal

14 p001 0190 20

28 po09 1000 8

gc poag 1199 12

F3 1111 @911 one's complement

+ 1
r4 1111 0919 -12
(b)) Add 8 and -20 (8 + (-208) = 12)

o8 poge 1000 8
EA 1110 191¢ ~-20
F4 1111 929190 -12

This example was included to verify that the addition of a
negative number would also produce the correct result.

(c) Add 234 and 8

28 000 1000 8
EA 1110 1919 234
F4 1111 ¢910 242

This example shows that the Z-88 1is indifferent as to
whether the bytes added are considered positive unsigned
numbers or signed numbers., The results are correct in either
case, To wverify that the binary answer 1is correct, we
evaluate each of the bits as follows: 2 + 16 + 32 + 64 + 128
= 242.

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 88

When a subtract with carry operation occurs, it subtracts
not only the number, but also the carry bit. Thus, while an
ADC operation may make the result 1 greater because of the
carry bit, an SBC operation may make it 1 less.

1.4 Multiple-Precision Addition and Subtraction

The 8-bit addition and subtraction operations can be combined
to perform calculations on any size quantities. As an example
of this sort of operation, we will first use the 8-bit
operations to perform 16-bit calculations. These can then be
compared to and verified by the 16-bit operations. The
following routine adds two two-byte values whose addresses are
contained in the IX and IY registers. For compatibility with
16-bit operations, it 1is assumed that the bytes are stored
"backwards® in memory (least-significant byte first):

LD A, (IX) ;get 1sb of 1st value
ADD A, (1Y) ;add 1lsb of 2nd value
LD (IX) ,A ;save in (IX)

LD A, {IX+1) ;get msb of 1st value
ADC A, (IY+1) ;now add the carry too
LD (IX+1) ,A ;Sstore in (IX+1)

The main point illustrated by this example is that the
carry bit must be added the second time but not the first.
Also, while this example takes six instructions, it is not
particularly difficult, and four of the six instructions are
used to retrieve and store the data.

The following subroutine performs a 1lé6~bit subtraction
operation, subtracting the value in the DE register pair from
that in HL and storing the result in HL. It is equivalent to
the Z-8¢ operation “SBC HL,DE", but has a very practical
application to the 8080 microprocessor, since the 8088 does
not include this instruction:

DsBC PUSH AF ;save previous value of AF
LD A.L :get lsb of lst operand
suB E ;subtract 1lsb
LD L,A ;save ineL
LD A,H ;get msb
sSBC D ;subtract msb
LD H,A ;save in H
POP AF ;restore AF
RET ;return

We can verify that the result produced by this subroutine
is identical to that produced by the SBC HL,DE instruction by

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 89

comparing the results later. (There 1is one difference,
however: the condition codes are not the same.)

It 1is now easy to see how these operations can be extended
to greater precision through the use of additional bytes to
hold the numbers. The following subroutine performs a 4-byte
integer addition to two sequences of bytes whose addresses are
held in the HL and DE register pairs, the former also being
used to hold the result. 4-byte integers 1like these are
capable of containing values wup to 2 to the 31st power -1,
which equals 2,147,483,647. 1In this case the bytes are all
stored backwards in memory, so that when the subroutine is
entered the registers point to the least-significant bytes:

ADD4 LD A, (DE) sget 1lsb of first number
ADD A, (HL) ;add lsb of second number
LD (HL) ,A ;save
LD B,3 ;3 remaining bytes
ADD4LP INC HL ;point to next bytes
INC DE
LD A, (DE) ;get next byte
ADC A, (HL) ;add the carry this time
LD (HL) ,A ;save
DJINZ ADDALP ;continue
RET ;done

Since the addition of all bytes after the first can be done
in a loop, the code for this routine is not significantly more
complicated than a 16-bit add loop. In fact, as the next
example shows, all operations can be done in a single loop
through the use of an additional instruction: OR A, which has
the sole effect of clearing the carry bit, without changing
the value in the accumulator. 1If the carry is cleared before
the first instruction 1is executed, but not after the
subsequent ones, the add or subtract with carry operations can
be used exclusively. The following subroutine does a 4-byte
subtraction corresponding exactly to the 4-~byte addition
above, wusing only the SBC operation, so that the whole
subroutine is one loop. The HL and DE registers are used to
hold the addresses of the operands, DE holding that of the
minuend and HL the subtrahend:

SuB4 LD B,4 ;4-byte subtract
OR A ;clear carry

SUB4LP LD A, (DE) ;9et minuend
SBC A, (HL) :subtract subtrahend
LD (DE) ,A ;save difference
INC DE ;point to next bytes
INC HL
DJINZ SUB4LP ;continue

RET ;done

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 90

16.5 Compare Operations

Compare operations are equivalent to subtracts, only with one
important difference: the wvalues in the registers are
unchanged. Only the condition codes are affected. The 2-80
has only 8-bit compare operations, all of which require wusing
the accumulator. The most obvious application of compares is
to test whether the value in the accumulator is equal to some
other number, but it is also possible to test whether it is
greater or less than another value. Compare instructions are
almost always followed immediately by conditional JP or JR
instuctions. Thus, it is most useful to remember the meanings
of the various conditions:

condition means that...

Z the value compared was EQUAL to that in the
accumulator.

NZ the two values are UNEQUAL.

C the absolute value in A is LESS THAN the
compared value.

NC the absolute value of A is GREATER THAN
OR EQUAL TO the compared value.

M The signed value of A is LESS THAN the
compared value.

p The signed value of A is GREATER THAN
OR EQUAL TO the compared value.

PO An overflow was produced by the compare
operation.

PE No overflow was produced by the compare

operation.

The Z and NZ conditions present no problem, while the
difference between C and M on the one hand, and NC and P on
the other, require additional explanation. Use of the P and M
conditions, which could be renamed NS ("no sign" = P) and S
(*sign® = M) by analogy with the others, depends on whether
you are using numbers in the positive and negative sense and
evaluating bytes on a —-128 to +127 basis. =2 is less than +1,
but the absolute value is greater because -2 is FE hexadecimal
in two's-complement form, whereas +1 is @l. The sign bit 1s a
copy of bit 7 of the accumulator.

The ¢ and NC conditions do not depend on the sign, but
rather on the absolute value of the bytes, on a scale from #
to 255. If the value of -1 in the accumulator is compared
with +1, the NC condition will be set, because the absolute
value of -1 is FF = 255. The advantage of using C and NC is
that the jump relative instructions recognize these conditions
(as well as Z and NZ), but not P and M (nor PO and PE).

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 91

1.6 16-Bit Instructions

As we mentioned above, the Z-8§ also has 16-bit addition and
subtraction operations. Most of these use the HL register
pair in the same way that the 8-bit operations use the
accumulator. The index registers can also be used for
addition only. The operations are as follows:

ADD HL,ss ss must be BC, DE, HL, or SP
ADC HL,ss

sBC HL,ss

ADD IR,pp pp must be BC, DE, SP, IX,

or 1Y (IX can be added only
to IX and 1Y to 1Y)

One of the first important differences between the 8-bit
and 16~-bit operations is that the 16-bit operations require
that the operands reside in the registers themselves. No add
or subtract with memory or immediate data exists.
Fortunately, the Z-8@ also has instructions that load double
registers directly to or from memory (the 8088 only allowed
this with HL).

There are two important applications of the 16-bit
operations: the computation of memory addresses and integer
arithmetic in Level 1II Basic. Any memory address can be
contained in a l6-bit register. You can thus compute the
addresses where data are stored 1if you need to. Level II
Basic integers may have values from -32768 to +32767. The
main difference between these two applications is the same as
between signed and absolute bytes: memory addresses are
usually considered on an absolute scale from ¢ to 65535, while
Level II Basic integers use the sign bit. 1If you are familiar
with the PEEK and POKE statements, perhaps you already know
that if you want to PEEK or POKE from locations 32768 to
32778, you have to go from 32760 to 32767, and then from
-32768 to -32766. The rule for this anomaly is that if the
PEEK or POKE address is above 32767, you must subtract it from
65536. Locations 32768 to 65535 are thus referred to by
-32768 to -1.

The 16-bit instructions can be used to perform the same
multiple-precision adds and subtracts mentioned above, in
fewer instructions. The problem here is that the register
pairs cannot be used to contain addresses, since they have to
be used to hold the data itself. This requires either
reorganizing the use of the registers in the subroutines, or
using additional instructions to fetch and store the bytes.
The following subroutine performs a 32-bit add as shown above,
using the 16-bit instructions. In this example, IX and 1IY
contain the addresses of the first byte of the operands.

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 92

IX is also used as a pointer to the result.

ADD4 LD B,2 ;loop twice
OR A ;clear carry

ADD4LP LD L, (IX) ;1st byte of 1lst operand
LD H, (IX+1) ;2nd byte of lst operand
LD E, (1Y) ;1st byte of 2nd operand
LD D, (IY¥Y+1) ;2nd byte of 2nd operand
ADC HL,DE ;perform addition
LD (IX),L ;save 1sb
LD (IX+1),H ;save msb
INC IX ;inc each reg twice
INC X ;since 2 bytes
INC 1Y ;added each time
INC Iy
DJINZ ADDALP ;continue
RET ;done

It can easily be seen that the additional work required to
fetch and store the data makes this method unwieldy and
cumbersome. Note also that the previous contents of HL, DE,
and B are lost in the above subroutine. Saving and restoring
them would require a minimum of six additional instructions.

The main advantage of the 16-bit arithmetic instructions is
that they can be built right into the code of a program
section, so that they do not require calling an external
subroutine, which 1is necessary for most other types of
arithmetic performed by the Z-80.

One final note. All 16-bit numbers, whether they represent
addresses in machine instructions or Level II Basic integers,
are stored "backwards" in memory, with the least-significant
byte first. This is done automatically by the LD
instructions, so that you never have to worry about it, except
if you go PEEKing through the individual bytes in memory. AS
we have seen, one advantage of this method (which goes back to
the 8g¢8, the predecessor of the 808f¢) is that the bytes can
be added in the order in which they occur in memory, for
multiple~precision operations.

1.7 INC and DEC

The INC ("increment") and DEC ("decrement") operations are
also classified as arithmetic operations, because they add or
subtract 1 from the registers, even though the value 1 can
never be changed. There is a tundamental distinction between
the single~ and double-register INC and DEC instructions. INC
r and DEC r affect the condition codes, but INC ss and DEC ss
do not. Unfortunately, Zilog uses the same mnemonic in each

ARITHMETIC OPERATIONS WITH INTEGERS PAGE 93

case, so the only way to keep it straight is to note carefully
the operands. (In Intel's 8§8¢ mnemonics, "INC ss* and "DEC
ss" are replaced by “INX s and “DCX s”. "“X" is always used
for double registers, and *“s" is the tirst register of the
pair.)

INC and DEC should always be used when you want to add or
subtract only one from a register, because the operation
requires only one byte and executes in 4 T cycles. These are
also convenient when you need to step through a series of
bytes one-at-a-time, as we saw above in the multiple-precision
addition and subtraction loops.

Single registers can be used to hold a count of the number
of times a series of instructions is to be executed. This
feature 1is provided automatically in the DJNZ instruction,
which DECrements B and branches to a nearby location if B is
non-zero (it is a jump relative). Up to 256 iterations can be
achieved by this method, because the register is decremented
before the “JR NZ“ occurs (to get 256 iterations, start B with
the value zero). Similar operations can be carried out using
any single register, although two instructions (the DEC and JR
or JP NZ) are needed.

A similar procedure can be instituted with the double
registers, but the fact that these INCs and DECs do not affect
the condition codes torces a revision in the procedure. The
use of two registers makes it possible to go through up to
65536 iterations in a loop. A special process is necessary to
test whether the value in the double register is zero. One of
the most common methods of doing this is the tollowing, which
tests whether HL is zero:

LD A,H ;load A from H
OR L ;or A with L
JR NZ,LOC ;if non-zero, continue

(Why this works will be explained later in our discussion of
logical operations.) The disadvantage of this method is that
it destroys the value in the accumulator, but practically any
other method would either do the same or would be more complex
than simply saving and restoring A.

BCD NUMBERS

11.1 Floating-pPoint Numbers

FLOATING-POINT NUMBERS are the most common method by which
numbers containing both an integer portion and a tractional
portion are represented in computers. A floating-point number
contains a SIGN, EXPONENT, and FRACTION. There is also a sign
of the exponent. The Level II Basic Reference Manual claims
that the fraction contains a certain number of SIGNIFICANT
FIGURES. Actually, it contains a number of significant BITS,
which more or less correspond to a number of significant
decimal digits. The only difference between single~ and
double-precision numbers 1is the number of bytes used tor the
fraction. Single-precision numbers use three, and double-
precision seven. The exponent is the same in each case and
requires one byte. The accuracy of double-precision numbers
is greater, but still not perfect, as we will see below.

Floating-point numbers on the TRS-8¢ have the following
format: the last byte contains the exponent, and the order of
the first three bytes is “backwards” in memory. The last byte
is what you will see if you PRINT PEEK(VARPTR(X)+3) for
single-precision numbers, where X is the number, or
PEEK (VARPTR(X)+7) for double precision numbers. The first bit
represents the sign of the exponent, 1 being used for positive
exponents and ¢ for negative exponents. A “positive” exponent
means that the binary point (same as “decimal point” but for
binary numbers) is moved to the right, and a “negative”

924

FLOATING~POINT AND BCD NUMBERS PAGE 95

exponent means that it is moved to the left, producing a value
less than 1. The exponent itself 1s contained in the
remaining seven bits, and thus can range from -127 to +127.
There 1is one exception: 1if this whole byte is zero, then the
number itself is zero. 2 to the 127th power allows a range of
values wup to about 14 to the 37th or 19 to the -39th power.
Any number in this range 1is represented with about six
significant figures for single-precision numbers, or 16
significant figures for double-precision numbers. The
following are some examples of floating-point exponents:

hexadecimal binary meaning

81 1000 9601 +1l: polnt moved one bit to
the right

83 1000 6011 +3: point moved 3 bits to
the right

7D @111 1101 -3: point moved 3 bits to
the left

8¢ 1000 6000 +@: the point is immediately

to the left of the tirst bit

The fraction of the number gives its value and is contained
in the remaining bytes in a backwards order. 1In addition, the
first byte of the fraction, stored next to last in memory
(VARPTR(X)+2 for single-precision numbers), gives the SIGN of
the number in its leftmost bit, @ indicating a positive and 1
a negative number. There is no difference between positive
and negative numbers except for this bit (no two's-complement
notation for floating-point numbers!). This leaves the most-
significant bit unaccounted for, and THIS BIT IS ALWAYS
IMPLIED TO BE A 1. A fraction consisting of 3 bytes of zeros
thus actually represents +1 binary. Now all we have to do to
evaluate floating-point numbers is to remember that each
binary bit represents a power of 2. Positive values equal 1,
2, 4, 8, 16, etc., and negative values 1/2, 1/4, 1/8, 1/16,
etc. The following examples illustrate how some
floating-point values are actually stored in memory:

hexadecimal

(order in binary fraction decimal
memory) (correct order) value
(a) @@ 20 00 81 1000 9000 0000 0000 PQ00 G000 l.0

The binary value of this number is 1 followed by all zeros.
The exponent +1 means that the binary point is moved one bit
to the right, producing 1.0009 (etc.). The sign of the number
is positive.

FLOATING-POINT AND BCD NUMBERS PAGE 96

(b) 00 02 40 83 1100 0000 0000 0000 0000 G000 6.0

When the exponent of +3 is applied, the binary number produced
is 116.8, which equals decimal 6.

(cy 00 00 40 81 1100 0000 0000 0000 0000 0000 1.5

Moving the exponent one bit to the right produces 1.1 binary.
“ 1" represents one-half in binary notation, so this number is
1.5.

(d) 00 00 FP 84 1111 0000 0000 0000 GQOP 0000 -15.9

1111 binary equals 15, but don't forget that the first bit of
the third byte is the sign of the number.

(e) 00 p@ F@ 80 1111 0000 0000 0000 0000 0000 9.9375

The exponent @ means that the binary point is immediately to
the left of .1111. This value is thus 1/2 + 1/4 + 1/8 + 1/16
=¢.9375. This example shows that, for values less than one,
you don't always have exactly six significant figures. Here
is a four~digit number represented completely correctly in
only four bits. Most numbers do not have such accuracy.

(£) CD CC 4C 7D 1100 1100 1100 11060 1100 11061 g.1

Just looking at the binary value of this number tells you that
it is a repeating fraction in binary form, Jjust as 1/3 in
decimal form gives .33333.... The exponent 7D equals -3, so
the fraction is .0@@11¢01190 etc. The value 1is computed as
1/16 + 1/32 + 1/256 + 1/512 etc. = .0625 + .03125 + .00390625
+ .@01953125 = .@99689375, getting closer and closer to .1 as
the process continues.

These examples illustrate some of the problems that occur
when wusing floating-point numbers. Many decimal numbers
cannot be represented precisely without losing some tiny bit
of accuracy. When many arithmetic operations are performed on
the same values, the magnitude of this inaccuracy increases.
This imprecision is a result of the method of number
representation, and does not disappear when double-precision
numbers are used, although the amount of error decreases. You
must remember that the number always contains significant
figures (bits). If you add 1¢00¢0.0 and .@0801 using single-
precision numbers, the result will be 1¢@09@6 because of the
loss of significance past the sixth digit. Flguring out the
value represented by some number, or figuring the
floating-point number corresponding to some value, is no easy
task.,

FLOATING~POINT AND BCD NUMBERS PAGE 97

What these examples 1illustrate 1is that it is difficult
enough to understand Jjust how £floating-point numbers are
represented inside the computer, let alone how to do
arithmetic on them. Each arithmetic operation requires a
complicated subroutine that may execute thousands of machine
instructions for each call. While Basic may be slow in
general, it is usually preferable to perform such operations
as floating-point calculations wusing Basic rather than
assembly language.

11.2 Binary-Coded-Decimal Numbers

There 1is another number format frequently used with the 808¢
and Z-80 microprocessors. It was considered to be so
important by the designers of these microprocessors that they
included a special machine operation and two special flags to
enable arithmetic operations to be done easily in this form.
This number format is called BINARY-CODED-DECIMAL or BCD. The
special operation is the DAA ("decimal adjust accumulator™)
instruction, and the flags are the half-carry (H) and
Add/Subtract (N) flags, which are used only by DAA, although
they are set or reset by many operations.

The advantages of BCD numbers are that they are inherently
very easy to understand, and any inaccuracies they contain are
the same for decimal numbers with which we are so familiar.
Although four bits can contain values from ¢ to 15, the values
from 14 to 15 are never used. Instead, when a DAA operation
is performed, any values above 9 are adjusted, so that the
maximum value contained in a digit is 9 and in a byte 99, the
excess value being shifted into the carry bit.

Any series of N BCD bytes contains N x 2 decimal digits.
In our examples below, we will restrict our use of decimal
numbers to two-byte quantities capable of holding values from
@ to 9999. We will first illustrate some BCD numbers, and
then arithmetic operations (addition and subtraction)
performed on them. One convenient property of BCD numbers is
that their decimal and hexadecimal values are the same.

(a) decimal: 1 2 3 4
binary: ool 0010 0011 0100
(b) decimal: 5 6 7 8
binary: @1l @1lg @111 19909
(c) decimal: 9 9 9 9 (maximum

binary: 1961 1601 1901 1991 value)

FLOATING-POINT AND BCD NUMBERS PAGE 98

When arithmetic operations are performed on BCD numbers, we
have to remember that there are no special operations that are
different from binary additions and subtractions, but BCD
numbers must be adjusted so that they never represent a value
of more than 9 in any digit. This is where the special DAA
operation is required. How 1t works may be seen from some
examples:

(d) decimal binary
1234 900l golp 001l 0100
+ 5555 101 G191 9101 0101
6789 @11¢ 8111 1000 1001
hexadecimal => 6 7 8 9

Since the sum of any two digits is not greater than 9, no
adjustment was needed here.

(e) decimal binary
6789 @119 @111 1400 1991
+ 1111 geol 0001 0p01 PBO1
7960 g111 1660 1801 1010
hexadecimal => 7 8 9 A wrong!

when the sum of two digits is greater than 9, a correction
in the form of a carry is required, just as it is when you add
two digits by hand. The important and simple fact about this
carry is that the computer can do it just by looking at each
successive digit, starting with the least-significant one.
This adjustment is made by means of the DAA instruction. If
the wvalue in any 4-bit digit after an add operation is
performed is greater than 9, 6 is added to it and a carry is
added to the next digit. The right digit within the byte
sends its carry to the left digit, and the left digit sends it
to the next byte by means of the carry flag. If the result is
greater than 9999, it cannot be contained within two bytes
anyway, so it languishes in the carry bit, and the result
shows only the right four digits. As long as DAA is performed
after each operation, the result will never get off.

In example (e) above, 1f a DAA is performed after the first
(rightmost) addition which yielded 9A, A would be changed to @
and 1 added to 9, producing another ¢ and setting the carry
bit. When the carry is added to the next byte it produces 79,
thus yielding the correct value of 7900 as the result.

(£) decimal binary
9999 1981 1e9l 1901 1001
+ 1111 d001 0p01l 0001 Q@01
11119 A A A A

DAA by +6: 1- 1 1 1 carry: 1

FLOATING-POINT AND BCD NUMBERS PAGE 99

Here we see that, after we perform the DAA operation, the
result is 1110, which is correct except that the first digit
is missing, but the carry bit is set.

Writing a subroutine to perform BCD addition is really
quite simple. The following subroutine uses index register IX
as a pointer to the first operand and IY for the second. The
result is stored in IX. The number of bytes in the BCD number
is set to 2 by the LD B,2 instruction, but could be set to a
larger value by simply changing this number.

BCDADD OR A ;clear carry
LD B,2 :2-digit add
ADDLP LD A, (IX) ;get first operand
ADC A, (1Y) ;add second operand
DAA ;adjust result
LD (IX) ,A ;store result
INC IX ;point to
INC Iy ;next bytes
DJINZ ADDLP ;continue till done

This subroutine clears the carry bit at the beginning so that
it can do all the additions in one loop using ADC.

(g) decimal binary
5432 2101 9100 ¢@ll 0010
__—1928 #9001 1001 0010 1000
3504 g1l 1911 00eg 1010
hexadecimal => 3 B 2 A wrong!
DAA by -6: 3 5 @ 4 right

How does the Z-80 know whether the last operation was an
add or subtract, meaning that the DAA has to adjust the result
by +6 or -6? The answer is that the N flag is set only by
subtract operations and reset by add operations. Similarly,
the half-carry flag is set only if the right 4 bits are
greater than 9. The H flag is like an "internal" carry, since
its only function is to adjust the left digit.

These examples show that BCD arithmetic 1is easy to
understand. Other advantages are the simplicity of converting
numbers for printing them, which requires only a hexadecimal
print routine, and the ability to insert a decimal point
between any two digits in a series of bytes, for fractional
arithmetic.

Surprisingly, BCD arithmetic is not used by the TRS-88 for
Level II Basic or any of the standard Radio Shack software.
It thus remains one of the most underutilized resources of the
TRS~80.

BIT OPERATIONS

12.1 Logical Operations

‘Phere is another category of computer operations that are not
as widely known as arithmetic operations. These are LOGICAL
OPERATIONS. They all operate on the individual bits of the
byte in the accumulator, which is compared to another byte
specified as the operand. There are three operations executed
by the Z-80: AND, OR, and XOR (exclusive OR). An AND
operation produces a 1 bit in the result only if both the
corresponding bits in the accumulator AND the operand are 1.
OR produces a 1 if the bit in either the first operand OR the
second operand, OR BOTH, are 1. XOR produces a 1 if either
the bit in the first operand or the second operand, BUT NOT
BOTH, are 1. These are summarized in the following table:

binary hexadecinmal
accumulator BBy 1111 g F
operand o1l 0011 33

result of AND 008 9611
result of OR g1l 1111
result of XOR #3111 1190

wws
Qmw

The carry bit is ALWAYS cleared (set to zero) by the
logical operations. Logical operations never produce ones in
bits unless they are already present in the operands. Their
functions are to “combine” bits in various ways.

100

LOGICAL AND BIT OPERATIONS PAGE 101

The logical operations have several applications for which
they are customarily wused. AND is used to MASK OUT certain
bits in a byte. A zero in the operand byte masks out a bit,
and a one preserves it, if present, For example, in printing
hexadecimal numbers, it is necessary to print the value
corresponding to each 4-bit digit. If we want to print the
least-significant digit, we need to mask out the left four
bits. This could be done by an AND @FH or AND 15 instruction.
(When "H" is appended to numbers, it indicates that they are
hexadecimal.) Hexadecimal values are frequently specified as
operands to logical operations because it 1is possible to
translate them directly into bits.

OR is used to “combine” the values of two bytes into one.
For example, to print the value of a digit from g to 9, it is
necessary first to discover the value to be printed, and then
to convert it to ASCII form. The ASCII representations of the
digits ¢ to 9 are 3¢H to 39H. It is thus necessary to put the
value g to 9 into the right four bits, and a "3" into the left
four bits. Assuming that the right four bits contain a @ to
9, the “3" can be combined with the others by an OR 30H
operation.

Another use of OR is to clear the carry bit. The operation
OR A, which ORs the accumulator with itself, changes no bit
values in the accumulator, but resets the carry. AND A also
works for this purpose. These are more efficient than any
other method, because the instructions take only one byte and
4 T cycles.

Another wuse of the OR operation occurs when testing the
value in a double register for =zero. The sequence of
operations:

LD A,H
OR L

will produce a zero in A only if the values in both H and L
are zero.

One of the most frequent applications of XOR is to zero the
accunulator, which is done by the XOR A operation. This also
clears the carry bit. Other uses of XOR are somewhat more
complicated than the other logical operations. For example,
it is possible to set up a *“toggle switch” wusing the
accumulator and an XOR operation, If A is set to 1 or @, each
time an XOR 1 operation is executed, the wvalue in A will
alternate between 1 and 4. This type of alteration is
possible only between two values,

Another such application on the TRS-88 occurs with the

LOGICAL AND BIT OPERATIONS PAGE 1@2

blinking asterisks that appear in the upper right corner of
the video display when cassette tapes are read. The ASCII
value of the asterisk is 2AH, and that of the blank space is
20H. The address of the upper right corner is 3C3FH. The
following sequence of operations will cause the character in
the right corner of the screen to change to the opposite
value, alternating between an asterisk and a blank:

LD A, (3C3FH) ;get character
XOR 10 ; 2AH ~ 20H = 10
LD (3C3FH) ,A ;replace new one

12.2 Bit Operations

Bit operations include manipulations on the individual bits
within a register or memory location, One of the great
improvements of the 2Z-80 microprocessor over the 8¢8¢ is the
enormously increased number of bit operations that the Z-80
executes. There are many different kinds of bit operations.
They can be divided into the categories of rotate, shift, set,
reset, test, and BCD instructions.

12.3 Rotate and Shift Instructions

SHIFT instructions move the bits within a byte from one
position to the next, in a right or left direction. The Dbit
on the end of the byte in the direction of the shift is lost,
and a zero is shifted into the bit on the opposite end.
ROTATE instructions are identical to shift instructions,
except that the bit that would normally be lost 1is shifted
around to the other side. All rotate and shift instructions
on the Z-8p move only one bit, so that they need to be
repeated to move the bits more than one position.

shift and rotate instructions are complicated by the fact
that all of them use the carry bit in one way or another.
Sometimes the carry participates as an “extra“” bit, producing
a 9-bit shift or rotate, and sometimes the carry is a
duplication of the end bit. ARITHMETIC shifts preserve the
SIGN bit (7) of the operand, whereas LOGICAL shifts have the
sign participate along with the other bits. (These are the
standard definitions of arithmetic and logical shifts. The
72-80's SLA ("shift left arithmetic") instruction is really a
logical shift.) Most instructions are logical operations. We
will first review the instructions executed by the Z-8@ and
then discuss applications.,

The first four instructions in this group are the only ones
also executed by the 8880. They only operate on the
accumulator, but they also require only one byte and execute

LOGICAL AND BIT OPERATIONS PAGE 193

in 4 T cycles. They are therefore found in many existing
programs:

mnemonic description operation
RLCA rotate A left 8-bit rotate: DLt 7
circular copied into both
bit g and CY
RLA rotate A left 9-bit rotate:

bit 7 => CY,
CY => bit ¢

RRCA rotate A right 8-bit rotate: bit ¢
circular copied to both bit 7
and Cy
RRA rotate A right 9-bit rotate:

bit 9 => Cy,
CY => bit 7

The remaining instructions, all Z~8¢ only, allow a myriad
of operands. Any register (except F) may be specified, or any
memory location addressed as (HL), (IX+d), or (IY+d). (There
is some redundancy here in that A may be specified for these
operations, duplicating the function of the instructions
above.) We will list the rotate operations first, since they
are identical to those above, except that they use different
operands. In the following table, “s" means any register (A,
B, ¢, b, E, H, or L) or (HL), (IX+d), or (Iy+d):

mhemonic description operation
RLC 3 rotate left circular same as RLCA
RL s rotate left same as RLA
RRC s rotate right circular same as RRCA
RR s rotate right same as RRA

There are only three shift instructions on the Z-8¢, and
they also allow any of the operands used for the above rotate
instructions to be specified. One of the shifts is designated
as a logical shift, and two shifts as arithmetic, even though
the "arithmetic" left shift is really a logical shift as noted

above. All of the shifts use the carry bit as a participant

in the operation, in that the bit shifted off the end |is

shifted into the carry bit. These instructions are as

follows:

mnemonic description operation

SLA s shitt left arithmetic bits @-7 shifted to
bits 1-CY; bit 0=0

SRA s shift right arithmetic bits 7-¢ shifted to
bits 6-CY; bit 7
unchanged

SRL s shift right logical bits 7-@ shifted to

bits 6-CY; bit 7=0

LOGICAL AND BIT OPERATIONS PAGE 104

shift and rotate instructions have many useful applica-
tions. One of their most obvious uses is in positioning the
bits within a byte in order to perform some function. For
example, to print the value of a byte in hexadecimal form, it
is necessary first to print the left 4-bit digit, and then the
right 4-bit digit. Converting a digit to ASCII form requires
putting the value into the right four bits and adding an
offset. If the value is between g and 9, the offset is 3¢H,
but 1f it is between 1¢ and 15, the offset is 37H, because 37H
+ 10 = 41H (ASCII "A"). To move the left four bits over to
the right, we could wuse the SRL operation four times in
succession. This would automatically clear the right four
bits, since zero is shifted into the left end. It would not
necessarily be the best way of programming this function,
however. Four SRL operations require 8 bytes and 32 T cycles
to execute, assuming that the operand is in the accumulator.
We could instead use four rotate instructions, and then mask
out the 1left four bits with an AND instruction. Four RRA or
RRCA operations require only 4 bytes and 16 T cycles, and the
ensuing AND @FH requires 2 bytes and 7 T cycles.

One of the most important applications of shift
instructions 1is that of multiplication and division by powers
of 2. When a byte is shifted 1left one bit, the value it
contains is multiplied by 2, and when it is shifted right the
value is divided by 2. This is illustrated by the following
series of SLA operations:

decimal CY binary hexadecimal
5 -~ 000p 9191 75 original value
X 2=10 @ pooe 1010 g A after 1lst SLA
X 2=20 1] 00al 9loo 1l 4 after 2nd sLA
X 2=440 @ goly 1000 2 8 after 3rd SLA
X 2=80 1] 2101 0000 50 after 4th SLA
X 2=160 7] 1019 0000 A D after 5th SLA
X 2=320 1 2100 0000 4 9 after 6th SLA

We can see that the result is no longer valid after the
sixth SLA operation, because it should be a larger value than
can be contained in a single byte. The carry bit can be used
to test whether this conditien has occurred, however, sc¢ that
a subroutine that uses this method can take account of it. If
we were using signed integers, the result would be incorrect
after the fifth SLA, since a 1 was shifted into the sign bit.
In this case, we would have to <check the S flag (P or M
conditions).

A more complicated extension of this principle can be used
to implement a subroutine for multiplication by 1¢. This
method depends on the fact that 16=8+2, both of which are
powers of 2. The following sequence of instructions

LOGICAL AND BIT OPERATIONS PAGE 145

multiplies the value in the accumulator by 18, using B to save
the value after the first shift:

SLA A ;multiply by 2

LD B,A ;save in B

SLA A :x 4

SLA A ;X 8

ADD A,B ;value x 8 + value x 2

Additional information about multiplication and division is
contained in chapter 13.

12.4 Bit Set, Reset, and Test Operations

SETTING a bit means setting it to 1. RESETTING it means
setting it to @. TESTING a bit, which is done by the “BIT"
instructions, means a test for =zero, the result being

indicated by the 2Z flag. The important thing about these
instructions is that they allow the same large number of
operands as the rotate and shift instructions. In the
following table, "s* indicates any of the operands A, B8, C, D,
B, H, L, (HL) , (IX+d), or (IY+d). “n" indicates the bit
number, which is g to 7:

mnemonic description operation

BIT n,s bit test test bit n in s

SET n,s set bit bit n in s set to 1

RES n,s reset bit bit n in s set to @
These bit operations have many obvious applications. One

of them is simply to use one byte as a test word for up to

eight “"yes-no" options., @ can indicate "no" and 1 *yes" (or

vice wversa). In our example of multiplication by 2 above, we
could test for the presence of the sign bit by a "BIT 7,A"
instruction.

12.5 BCD Operations

There are two special BCD rotate instructions that have highly
specialized applications. (BCD numbers were described in
chapter 11. They consist of two 4-bit digits containing
values from 9 to 9 in each digit. For the purpose of these
operations, the digits can contain any values.) The two BCD
rotates, RLD and RRD, operate jointly on the contents of the
accumulator and on the memory location addressed by the HL
register pair, and they shift four bits at a time. In each
case, the 1left four bits of A (bits 4-7) are unchanged, and
the remaining three digits, contained in bits ¢-3 of A,
together with the two BCD digits in (HL), are shifted. RRD

LOGICAL AND BIT OPERATIONS PAGE 106

shifts to the right and RLD to the left. The operation of
these instructions can be diagrammed as follows (showing the
contents as decimal digits rather than in binary form):

A bits 4-7 @-3 (HL) bits 4-7 0-3
Original values @ 5 4 3
after RLD] 4 3 5
original values (repeated)] 5 4 3
after RRD @ 3 5 4

The wuses of these operations are clearly restricted to
specialized applications involving BCD numbers, which are not
used by any of the standard TRS-80 software.

SOFTWARE
MULTIPLICATION
AND DIVISION

One of the greatest limitations of all 8-bit microprocessors
is that they have no instructions that execute multiplication

and division. Therefore, all such operations must be
performed through programming, by means of repetitively
executing additions and subtractions. This chapter is

intended to show the reader how these operations are carried
out in general, without covering the subject exhaustively. We
will restrict our consideration to integer operations of
various byte lengths, Multiplication and division are two of
the most complicated and specialized subjects of microcomputer
programming. Arithmetic computing ability is one of the few
areas where the newer 16-bit microprocessors have a distinct
advantage over the Z-8¢ and the 8@80.

You may never have been aware of these limitations of the
TRS-8¢, because Level II Basic executes all arithmetic
operations -~ even exponentiation. When you realize that
Level II contains these facilities for three different number
formats, you can better appreciate the extent to which its
designers have gone for your convenience. The one thing you
probably do notice, particularly about exponentiation, is that
it takes a noticeable amount of time to execute. A few
seconds to evaluate one complicated mathematical formula nay
correspond to millions of machine operations.

187

SOFTWARE MULTIPLICATION AND DIVISION PAGE 198

13.1 8-Bit Multiplication

First, let us note a few general points about multiplication.
The two numbers that are multiplied together are called the
MULTIPLIER and the MULTIPLICAND, and the result is called the
PRODUCT. The product of two numbers of a given length may
require twice as many digits to contain the result (99 x 99 =
9881) . In binary terms, the product of two 8-bit numbers may
require 16 bits, and the product of two 16-bit numbers may
require 32 bits. (The maximum value that can be contained in
a byte is 255. 255 x 255 = 65§25, which requires 16 bits but
is less than the maximum value that can be contained in 16
pits.) Any routines that we write for multiplication will
have to take this fact into account.

when we learned to do arithmetic in school, we learned that
multiplication can be performed by repetitively adding one

number another number of times. The most direct type of
multiplication subroutine can work in the same way. The
following example makes use of this method. when it is

entered, the multiplicand is in A and the multiplier in B. The
result is returned in HL, to reflect the fact that the product
of two 8-bit numbers may extend to 16 bits, as mentioned
above.

;unsigned 8-bit multiplication subroutine
;on entry, A=multiplicand, B=multiplier
;on exit, HL=product, B=p§

MULT8P LD L,A ;multiplicand to L
LD H,9 ;Zzero high order bits
INC B ;test B
DEC B ;for zero
JR 2,2ER0 ;B=0
DEC B ;1£ B=1,
RET Z ;A=product
PUSH DE ;save DE
LD D,H ;move HL
LD E,L ;to DE
MULOOP ADD HL,DE ;add multiplicand
DJINZ MULOOP :continue B (-1) times
POP DE ;restore DE
RET ;done
ZERQ LD L,9o ;result is zero
RET

This subroutine works by placing the multiplicand into both
L. and E, and clearing H and D. DE is added to HL (B-1) times,
1f B=1, we return after loading HL because A times 1 is A, If
B=@, the result is zero because anything times zero is zero.
The method of INCrementing and DECrementing B is a quick way

SOFTWARE MULTIPLICATION AND DIVISION PAGE 109

to test whether B is zero, without changing the values in any
register.

One of the problems with this subroutine is that it is
valid only for UNSIGNED numbers. If we want to take the sign
bit into account, another procedure 1is necessary. The
simplest way of implementing signed multiplication is to check
the signs on entry, do the multiplication on positive numbers
as above, and readjust the sign on exit, if necessary.

The following subroutine uses repetitive addition to
perform 8-~bit signed multiplication, using the same registers
as above. The XOR operation is used to create the sign of the
product ({(+ x +) and (- x -) are both positive. Only (+ x =)
and (- x +) are negative). OR A (which clears the carry bit
and sets the condition codes to reflect the value of A without
changing it) is used to test for positive or negative values.

;Signed 8-bit multiplication by repetitive addition
;on entry, A=multiplicand, B=multiplier
;on exit, HL=product, B=@, A destroyed

MULTS8 LD L,A ;save A temporarily
LD H,0 ;zero high bits
INC B ;test for
DEC B ; B=0
RET Z ;s product=0¢
XOR B ;form product sign
PUSH AF ;save sign in stack
LD A,B ;test value of B
OR A
Jp P,TSTA ;if + skip
NEG ;Create positive equivalent
LD B,A ;replace

TSTA LD A,L ;retrieve A
OR A ;test value
Jp P,MUL sif 4+
NEG ;positive equivalent
LD L,A ;replace in L

MUL DEC B ;if B=1,
JR Z,ADJUST ;product=nultiplicand
PUSH DE ;save DE
LD D,H ;move HL
LD E,L ;to DE
ADD HL,DE ;add multiplicand
DJNZ $~1 ;continue till B=¢
POP DE ;restore DE

ADJUST POP AF ;retrieve sign
OR A ;test sign of product
RET P ;ok if plus
LD A,L ;form negative equivalent

CPL ;complement
LD ;replace in L

-
g

SOFTWARE MULTIPLICATION AND DIVISION PAGE 110

LD A,H ;do same with H
CPL

LD H,A ;replace

INC HL s NEG=CPL+1

RET ;done

While multiplication by repetitive addition does work, it
is extremely slow compared with other ways of implementing the
operation. It should be used only when small numbers are
being multiplied. The usual way in which multiplication is
carried out involves a process similar to the paper-and-pencil
method of performing the operation, where vyou align the
product of each additional digit one position to the left to
indicate that it is a greater power of 1@, such as in the
following examples:

123 456
x 456 x 123

738 1368
615 912
492 456
56088 56088

A binary multiplication might be written out as follows:

binary hexadecimal decimal
gele 1911 2BH 43
X 09001 9101 15H 21
P19 1011 387H 43
0 0806 980 86
g0 1010 11 ——
po0 BOOO O 903
P91 1011

Note that it 1is very easy to write out the product of a
binary number, because the result is either the original
nunber or zero, In the first, third, and fifth rows above, we
have the same number, the multiplicand, the only difference
being the wvertical alignment. Spaces are placed every four
bits to increase readibility.

This method of multiplication, shown below, makes use of
the fact that when you add the value in the HL register pair
to itself, the result is shifted left one bit:

SOFTWARE MULTIPLICATION AND DIVISION PAGE 111

H L hexadecimal decimal
o000y 1010 001le 1011 @A2BH 2603
gogg 1019 09190 1011 gA2BH 2693
peBl 9100 9101 0110 14560 5206

The subroutine below uses this principle to create unsigned
multiplication, as above. The bits of the multiplier are
tested successively, and the multiplicand 1is added to the
product if the tested bit is one. If it is zero, the addition
is skipped. The product is then shifted 1left to be in
position for the next Dbit. This subroutine uses the same
registers as those above.

;unsigned 8-bit multiplication
;on entry, A=multiplier, B=multiplicand
;on exit, HL=product, B=@, A destroyed

MULT8P PUSH DE ; save DE
LD E,B jmultiplicand to E (LSB)
LD D,? ;clear high bits of DE
LD B,8 ;8 bit multiply
LD HL, @ ; Zzap product
MULOOP ADD HL,HL ;shift product left 1 bit
RLCA ;shift multiplier bit into C
JR NC,MULP2 ;skip addition if zero
ADD HL,DE ;else add multiplicand
MULP2 DJINZ MULOOP ;continue through 8 bits
POP DE ;restore DE
RET ;done

13.2 16-Bit Multiplication

16~-bit multiplication c¢an be carried out in a manner exactly
analogous to 8-bit multiplication, as long as we remember that
the product may have to occupy 32 bits. If we want to
implement a practical method for 16-bit operations, as in
Level 1II Basic integer arithmetic, then we would say that
OVERFLOW exists when the product requires more than 16 bits.
This could either cause an error condition, or we could simply
use the 16 low-order bits, producing a result modulo 65536.

The following subroutine performs unsigned 16-bit
multiplication, on a multiplier and multiplicand contained in
the BC and DE register pairs. The low-order bits of the
product are returned in HL, and the high-order or overflow
bits in DE. It is the calling program's responsibility to
test DE for zero to determine whether overflow has occurred,
and proceed appropriately. This subroutine uses A as a
counter for the number of bits in the operation, and uses the

SOFTWARE MULTIPLICATION AND DIVISION PAGE 112

more efficient method of shifting the product left for each
successive bit rather than repetitive addition.

;16-bit unsigned multiplication
;on entry, BC=multiplicand, DE=multiplier
;on exit, product in DE (high-order) and HL (low-order)

MULT16 LD A,l6 ;bit count
LD HL, O ;Zero initial product

MLT1 ADD HL,HL ;shift product left 1 bit
RL E ;shift low product to carry
RL D ;multiplier bit to carry
JR NC,MLT2 ;skip if wmultiplier bit p
ADD HL,BC ;else add multiplicand
JR NC,MLT2 ;skip if no carry to hi bits
INC E ;increment 3rd byte
JR NZ ,MLT2 ;skip if no carry to 4th byte
INC D ;increment 4th byte

MLT2 DEC A ;bit count
JR NZ ,MLTL ;continue till @
RET ;done

The "RL E" operation shifts the left bit of register E into
the carry, and the immediately following “RL D" shifts the bit
from the carry into bit 8 of D and bit 7 of D to the carry.
This 1is, in effect, a double-precision left shift. The last
bit shifted into D is the bit that we test for the
multiplication, and if it is =zero we skip the intervening
steps. Once the multiplicand has been added, we have to find
out if there is a carry to the third or fourth bytes. Since
the “ADD HL,BC" operation produces a carry in this case, all
we need to do is to test the carry bit after this operation.
If there is one, E is incremented, and then we need to know if
there is a carry from E to D. Unfortunately, the "INC E*
operation does not affect the carry, but the only time a carry
would be needed would be when the value of E was 1111 1111
binary, producing =zero after the incrementing. We can
therefore test the zero flag in this instance.

Signed 16-bit multiplication can be done in the same manner
as signed 8~-bit multiplication, the only additional
complication being that negation of the ©product must be
carried out on all four bytes of the result. The following
subroutine carries out this procedure, using the same
registers as above.

;signed 16-bit multiplication

;on entry, multiplier and multiplicand in BC and DE

;on exit, product in DE + HL

MPY16 LD A,B ;determine product sign
XOR D ;8ign in bit 7 of high byte
PUSH AF ;save sign in stack

SOFTWARE MULTIPLICATION AND DIVISION PAGE 113

LD A,B ;test sign
OR A ;of multiplier
JP P,MPYL ;skip if positive
LD HL, 2 ;negate BC by subtracting
;from zero. No need to clear
SBC HL,BC ;carry because of prev. OR A
LD B,H ;transfer HL
LD ¢,L ;to BC
MPY1 LD A,D ;test sign
OR A ;of multiplicand
Jp P,MPY2 ;ok if plus
LD HL, 0 ;negate DE
sBC HL,DE ;by subtracting from zero
EX DE,HL ;transfer to DE by exchange
MPY2 LD A,l6 ;bit count
LD HL, 9 ;initial product
MPY3 ADD HL,HL ;same method as above
RL B ; (see comments above)
RL D
JR NC,MPY4
ADD HL,BC
JR NC,MPY4
INC E
JR NZ ,MPY4
INC D
MPY4 DEC A
JR NZ ,MPY3
POP AF ;retrieve sign of product
OR A ;test it
RET P ;done if plus
XOR A ;form negative equivalent
sSUB L ;by subtraction from zero
LD L,A ;replace L
LD A,0Q ;clears A but not carry
SBC A,H ;propagate carry to 2nd byte
LD H,A ;replace H
LD A,Q ;clear A but not carry
SBC AE ;3rd byte
LD E,A ;replace
LD A,0 ;clear A but not carry
ABC A,D ;4th byte
LD D,A ;replace
RET ;done

This subroutine uses the method of producing a negative
equivalent of a positive number by subtracting it from zero.
The negation of the product propagates the carry bit through
four bytes (from L to H to E to D).

SOFTWARE MULTIPLICATION AND DIVISION PAGE 114

13.3 8-Bit Division

when division is performed, a number called the DIVIDEND is
divided by the DIVISOR, producing a QUOTIENT and a REMAINDER.
As long as we are restricting our consideration to integers,
we have only to return these two values and not worry about
their meaning. When performing division, we have the opposite
situation from multiplication with regard to the magnitude of
the numbers involved. A 16-bit dividend may be divided by an
8-bit divisor to produce an 8-bit quotient. There is one
consideration that must be taken into account here. The
quotient must be able to be contained in 8 bits. If this is
not true, a DIVIDE FAULT condition exists. 1In addition, the
divisor must not be zero -- at least, in any subroutine that
we write for division, we must guard against causing the
program to go into an infinite loop on a divide-by-zero.

As with multiplication, the simplest kind of division to
understand is a method that uses successive subtractions. The
following subroutine parallels the unsigned 8-bit
multiplication above. On entry, HL contains the dividend and
A the divisor. On exit, the quotient is returned in B and the
remainder in L. The previous value of DE is lost.

;unsigned 8-bit division
;on entry, HL=dividend, A=divisor
;on exit, B=quotient, L=remainder, DE destroyed

DIvV8P OR A ;test A for zero
JR Z,DZERO ;divide by zero
LD B, ;2ero initial quotient
LD E/A ;divisor to low bits of DE
LD D,? ;2ero high bits
DIVLP OR A ;clear carry
sBC HL,DE ;subtract divisor
JPp M, REM ;1f negative, done
INC B ;increment quotient
JR DIVLP ;continue
REM ADD HL,DE ;find remainder
RET ;done
DZERO [;set error code

This subroutine makes no effort to catch a divide fault
condition. It simply allows the process to continue by
incrementing B until HL goes negative. Therefore, the result
is actually the quotient modulo 256, and may be incorrect.

The method of successive subtraction is also very slow, and
a process of shifting, similar to that for multiplication, can
be implemented instead. The following subroutine achieves the
same result as that above, but uses only eight subtractions.
The quotient is returned in L and the remainder in H.

SOFTWARE MULTIPLICATION AND DIVISION PAGE 115

;unsigned 8-bit division
;on entry, HL=dividend, A=divisor
;on exit, L=quotient, H=remainder

DIV8P LD B,8 ;bit count
LD E,0 ;clear low-order byte
LD D,A ;DE=divisor
DVl ADD HL,HL ;shift divisor left
SBC HL,DE ;subtract divisor
JR c,bv2 ;1f C then high dvdnd < dvsr
INC HL ~ ;1f NC set quotient bit to 1
JR DV3 ;skip following add
Dv2 ADD HL,DE ;restore high dividend
DvV3 DJINZ DV1 ;continue for 8 bits
RET ;done

The “ADD HL,HL" at DVl clears the lowest bit of L, which
will be used to hold the quotient bit. Note that the
subtraction of the divisor affects only the high-order byte,
because we placed it into D and cleared E before starting. If
the subtract produces a carry, then the high-order dividend
was less than the divisor -- in other words, the subtract was
not wvalid. In this instance, the bits are restored by the
following "ADD HL,DE".

Now let wus examine the divide fault condition more
carefully. First, the highest bit of the dividend must not be
a one, at least if the above method is used, because the "ADD
HL,HL" will shift it out into the <carry, before the first
subtraction. Second, the divisor cannot be zero. In the
remaining instances, the divide fault can exist only 1if the
high-order byte of HL (H) 1is equal to or greater than the
divisor (A). Some examples will clarify this:

HL = 16384 4000H
A = 48 3gd
16384 / 48 = 341 R 16 155H
HL = 28672 70001
A = 64 40H
18672 / 64 = 448 R O 1CgH
HL = 28672 T000H
A = 112 704
28672 / 112 = 256 R 0@ logn
HL = 16384 4000H
A = 84 50H
28672 / 80 = 204 R 64 CCH

Each of the «quotients in the first three examples are
greater than 255, requiring an additional byte. This byte

SOFTWARE MULTIPLICATION AND DIVISION PAGE 116

comparison of A with H can be used as a method of checking for

a divide fault. The following 1is an extension of the
preceding subroutine: when added to the beginning, it will
jump to the location DFAULT (not shown) if the divide fault

condition exists, otherwise proceed as before.

;check for divide fault condition

DIV8F BIT 7,4 ;test high bit of H
JR NZ,DFAULT ;divide fault if 1
cp H ;compare high dvdnd, divisor
JR C,DIV8P ;ok if divisor less
JR DFAULT ;else divide fault

DIV8P con ; (as above)

The “JR C,DIV8P" also takes care of the situation where A
is zero, because in that case H cannot be less than A.

13.4 16-Bit Division
By 16~bit division, we mean of course division of a 32-bit
dividend by a 1lé6-bit divisor producing a gquotient and
remainder of 16 bits each. A subroutine to perform this

operation 1is a simple extension of the 8-bit subroutines
above. The following subroutine divides the 32-bit dividend
in H, L, B, and C by the 16-bit divisor in DE. The quotient
is returned in BC and the remainder in HL. If there 1is a
divide fault, the program jumps to location DFAULT (not
shown) .

;16-bit unsigned division
;on entry, dividend in H,L,B,C (highest to lowest),
;divisor in DE

;on exit, quotient in BC, remainder in HL, A=0

DIV16 BIT 7.H ;test highest divident bit
JR NZ ,DFAULT ;divide fault if 1
PUSH HL ;save high dividend bytes
PUSH DE ;save divisor
OR A ;clear carry
SBC HL,DE ;subt. divisor frm hi dvdnd
JR NC,DFAULT ;fault if NC
POP DE ;get back divisor
POP HL ;get back high dividend
LD A,16 ;bit count
DIVDl SLA C ;shift dividend left
RL B ;shift into B
ADC HL,HL ;add HL + carry from B
SBC HL,DE ;subtract divisor
JR NC,DIVD2 ;ok 1f no carry
ADD HL,DE ;else add back
JR DIVD3 ;try next bit

SOFTWARE MULTIPLICATION AND DIVISION PAGE 117

DIVD2 INC C ;set quotient bit to 1

DIVD3 DEC A ;decrement bit count
JR NZ ,DIVD1 ;continue 16 times
RET ‘ jdone;

The “SLA C* shifts the lowest byte of the divident left,
clearing bit @ and shifting bit 7 into the carry. The
following "RL B" shifts the carry into bit @ of B, thus making
this a 16~-bit shift. The following "ADC HL,HL" shifts HL left
one bit, but it also picks up the carry from bit 7 of B. The
bit wvacated by the “SLA C" is where the quotient is stored,
and the quotient is propagated into B by the double left
shift.

A 16-bit signed divide subroutine is not shown, although it
is a simple matter to construct one using the same method
shown above for 8-bit division.

CASSETTE INPUT
AND OUTPUT

Transferring data between memory and the cassette tape
recorder is similar to reading the keyboard or displaying
characters on the video monitor. It is not really necessary
for a programmer to know how such a transfer works, as long as
he knows how to wuse the ROM subroutines that carry out the
essential operations. One important difference between the
keyboard and video display on the one hand, and the cassette
recorder on the other, is that the former are memory mapped,
whereas the cassette recorder is interfaced through an
input/output port, number 255 (hexadecimal FF), which also
controls the 32- or 64-character mode of the video display.
Thus, only certain bits of this port are used. The disks and
line printer are also memory-mapped, whereas the RS-232~C
interface and various other peripherals are interfaced through
ports. The TRS-80 has much room for expansion of input and

=yt imoa 3 3
cutput devices using either methed.

The addresses of ROM subroutines that are used for cassette
input and output have been mentioned above in chapter 5, but
they will be reviewed here in more detail, All are located
between addresses @1D9H and 0313H. (“H" is often appended to
addresses to remind you that they are hexadecimal numbers.)

118

CASSETTE INPUT AND OUTPUT PAGE 119

14.1 Cassette ROM Subroutines

Address Function
#1lF8H Turns cassette off. Uses register A.
#2124 “Define drive*: A=@ for cassette 1 or 1 for

cassette 2.
Turns on the proper cassette drive and selects it
for subsequent operations.

@235H Read byte, which is returned in A.
Uses no other registers.
@264H Write byte in A to cassette.
Uses no other registers.
#287H Write leader and sync byte. Uses AF, C.
B296H Read leader and sync byte. Uses AF. Two

asterisks appear in the upper right corner of the
video display when leader and sync byte are found.

B3314H Reads two bytes (LSB/MSB) and transfers to HL.
Uses AF,

All cassette 1input and output operations 1in assembly
language can be done using these subroutines. All standard
tape formats are readable. Some programmers have developed
non~standard methods that encode the bits in some different
way. These operations are beyond the scope of this
discussion.

The beginning of a file on the cassette tape 1s signified
by a *leader and sync byte", which is actually a succession of
255 zeros followed by A5 (the sync byte). Each bit of data is
read from the tape separately. This means that the timing of
the routine that reads the bits is extremely crucial. This is
why you must disable interrupts (CMD"T") in Disk Basic when
reading cassettes. It is also why TRS-80 owners who have had
the clock speed modified must switch to the older, slower
speed in order to read standard cassette tapes.

Once the cassette tape is turned on and the leader and sync
byte located or written, it is the programmer's responsibility
to keep up with the speed of the cassette in order to read or
write data properly. (Writing data may be less crucial than
reading it.) The data-transfer speed of the cassette is 500
baud ("baud* means *“bits per second"), so that a bit must be
read or written every 2 milliseconds. wWwhat this means |is
that, for most purposes, all you can do is to read or write
data into or out of memory and stop the cassette when you want
to do some computation. Each time you stop the cassette, you
must start it again with a leader and sync byte combination,
to make sure that no data is lost due to the start and stop
motion of the cassette. Any program that does not keep up
with the 5@f-baud data transfer rate will lose bits of data,
thus reading incorrect values.

CASSETTE INPUT AND OUTPUT PAGE 120

14.2 Tape Formats

To keep up with the cassette's speed, standard tape formats
have been developed by Radio Shack to indicate what the data
on the tape represents, where it goes, when to stop the
cassette, and what to do after stopping. There are four
standard tape formats: Basic programs, Basic data, machine-
language object tapes (the SYSTEM format), and
Editor/Assembler symbolic-program files. Other formats, such
as data files for the Electric Pencil program, have been
devised for various reasons, but will not be discussed here.

1. Machine Language Object (SYSTEM) Tapes

An “object program" is a program in machine code ready to
run on a computer. When stored on an external medium such as
a cassette tape, it is necessary only to dump it into memory
and jump to the starting location.

The object-program format is also known as the SYSTEM
format because of the Basic command used to read such tapes.
Data is written on the tape in the form of blocks 1less than
256 bytes in length. Each block begins with a header byte
identifying what kind of block it is. There are three types
of blocks: FILENAME, DATA, and ENTRY. FILENAME is first,
followed by any number of DATA blocks. The ENTRY block comes
last, after which the cassette is turned off. The whole tape
has the following structure:

(Leader and Sync Byte)

Filename Header 55H

File Name 6 bytes (ASCII), filled with
blanks if name less than 6
characters.

Data Header 3CH

Count Byte Number of data bytes to
follow (1-256)

Load Address 2 bytes, LSB/MSB, indicating

where data is to be loaded
(Other Data Blocks)
Entry Header 78H
Entry Address 2 bytes, LSB/MSB.

The fact that each data block has its own address means
that data can be loaded anywhere in memory, and that the same
tape can contaln data that goes into several different areas.
Usually, only the Editor/Assembler program produces such tapes
(through the wuse of different ORG statements), because
monitors such as TBUG or Monitors 3 and 4 (as well as the
TAPEDISK utility program) require that you specify one

CASSETTE INPUT AND OUTPUT PAGE 121

contiguous Dblock. If the checksum is wrong, or if the header
byte is not 55, 3C, or 78, an error is produced. If reading
the cassette under SYSTEM, a “C" replaces one of the asterisks
in the upper right corner.

2. Editor/Assembler Source Program Tapes

Source tapes for the Editor/Assembler program have a tormat
different from other tapes:

(Leader and Sync Byte)

Filename Header D3H

File Name 6 bytes (ASCII), padded with
blanks

Individual program statements:

Line Number 5 bytes, ASCIlI-encoded,
with bit 7 (parity) set

Statement Code (Any length). TAB (right
arrow) key encoded as 9.

Carriage Return gD (ENTER Kkey)

(Last statement - END ~ encoded in same manner)
End Byte 1AH (shift down—arrow)

This format is essentially a dump of the memory area that
holds the source program when running the Editor/Assembler
program, except that when the program resides in memory, the
line numbers are stored in two bytes (LSB/MSB). The tape thus
takes more room than the program in memory. This is also the
format used to hold symbolic files on disk.

3. Level II Basic Program Tapes

A Level II Basic program tape is essentially a dump of the
program as it is stored in memory. This is not the way in
which vyou type it in, nor the way it is listed when you print
it, because all of the key words are translated into a binary
code. Statement numbers are stored in two bytes. This is why
they may have a maximum value of 65529 (65535 1less a few
values used for special purposes). The only recognizable data
is the ASCII text in PRINT statements, variable names, and
constants. The complete format is as follows:

CASSETTE INPUT AND OQUTPUT PAGE 122

(Leader and Sync Byte)

Header D3 D3 D3
File Name First byte only, ASCII
Program Statements Starts loading directly into

42E9H (Level 1II)
or 68BAH (Disk Basic)
End Flag 00 00 09

This 1is also the standard format wused to store Basic
programs on disk, except that disk storage also provides the
ASCII option (SAVE "PGM",A), which stores the program in
exactly the same way that it is printed by a LIST command.

4, Level 11 Basic Data Tapes

Because of the one important point mentioned above -- that
you must write a new leader and sync byte each time that you
start or stop the cassette -- Level II Basic data tapes are

stored in a very inefficient manner. Each time a PRINT #-1 or
INPUT #-1 is executed, a new leader and sync byte 1is written
or read. A Basic program can take advantage of this
situation, by trying to include as much data as possible
within a single statement, but it is impossible to escape the
fact that most of the time is spent reading the leader and
sync bytes.

The exact format of a data tape 1is so simple that a table
is not necessary. After the leader and sync byte comes the
data itself, terminating in a carriage return. Individual
items in the list are separated by commas. For this reason a
comma cannot be included in a string saved on cassette tape
(nor can a carriage return). Strings are written simply as a
series of characters. All numbers, whether they represent
integers or single-~ or double-precision values, are stored as

ASCII strings surrounded by blank spaces. Thus, &a number
could be written as an integer and read as a single- or
double-precision number or string. The decimal point 1is

included if present. A string consisting of numerals can be
written as a string and read as a number, but if it contains
any non-numerical characters, an error is produced. The
warning in the LEVEL II BASIC REFERENCE MANUAL is not totally
correct, It is possible to read data in some form other than
that in which it was written, but you must always read the
same number of items. The carriage-return character (@DH) is
the cue to stop the cassette when data is being read.

CASSETTE INPUT AND OUTPUT PAGE 123

14.3 Programming Cassette Input and Output

The most useful format for an assembly-language programmer is
that for machine-language object tapes. Using this format,
both programs and data can be saved, as long as they are read
into or out of a contiguous memory block. The program shown
below reads an object tape into memory, even blinking the
asterisk in the upper right corner like the SYSTEM command.
Rather than having you specify the name, however, the name is
read off the tape and printed on the video display. When the
program has been read completely, the starting, ending, and
entry addresses are also printed. The program then waits for
you to type a key. If you type ENTER, execution of the
program read into memory begins. Otherwise, 'the system is
repooted.

; PROGRAM TO READ MACHINE-LANGUAGE OBJECT TAPES

REBOOT EQU @ ; ROM ADDRESSES
VIDEO EQU 33H
INPUT EQU 494
CASOFF EQU 1F8H
DEFDRV EQU 212H
RSYNC EQU 296H
RBYTE EQU 235H
RHL EQU 314H
ORG TE@ZH ;NEAR TOP OF 16K
START CALL CLS ;CLEAR SCREEN AT START
READY LD HL, FREADY ;PRINT "READY CASSETTE"
CALL PRINT
CALL INPUT iWAIT FOR KEYIN
LD HL, FNAME ;s MESSAGE
CALL PRINT
XOR A ; CASSETTE 1
CALL DEFDRV
CALL RSYNC
CALL RBYTE ; FIRST BYTE
cp 55H ; FILENAME HEADER
JR NZ ,CERR ;WRONG TAPE IF NOT
LD B,6 ;i 6-LETTER NAME
CALL RBYTE
CALL DISP ; PRINT ON SCREEN
DJINZ $-6
CALL RBYTE ; FIRST BLOCK
CALL RDH
LD (ADR1) ,HL ;SAVE 1ST LOC
JR CLP2
CLP CALL RBYTE ;1ST BYTE OF BLOCK
Ccp 78H ;s ENTRY?
JR Z ,CEND

CALL RHD

CLP2

CRD

CHKSM

CERR

RHD

PRINT

ADD
LD
CALL
LD
ADD
LD
INC
DJNZ
CALL
cp
JR
PUSH
LD
LD
CP
JR
LD
LD
pPOP
JR
LD
JR
LD
CALL
CALL
JR
LD
CALL
LD
CALL
LD
CALL
LD
CALL

CALL
CALL
cp
Jp
JP
Cp
JR
CALL
LD
JP
LD
AND
CALL
BIT
RET
INC

CASSETTE INPUT AND OUTPUT

A,L

C,A
RBYTE
(HL) ,A
A,C

C,A

HL

CRD
RBYTE

Cc

NZ ,CHKSM
HL
HL,3C3FH
A, [§

(4L)
NZ,$+4
A,I]
(HL) ,A
HL

CLP

HL, FCHKSM
$+5

HL, FCERR
PRINT
CASOFF
READY
(ADR2) ,HL
RHL
(ADR3) ,HL
CASOFF
HL, (ADR1)
PHL

HL, (ADR2)
PHL

HL, (ADR3)
PHL
INPUT

13

NZ ,REBOOT
(HL)

3CH

NZ ,CERR
RBYTE
B,A

RHL

A, (HL)
TFH

DISP

7, (HL)

NZ

HL

;COMPUTE CHECKSUM
;SAVE IN C

; READ DATA

;SAVE IN MEMORY

; COMPUTE CHECKSUM
;SAVE IN C

s NEXT LOC

; CONTINUE THRU BLOCK
; CHECKSUM FROM TAPE
;s OK?

;IF NOT, BAD READ

;RIGHT CORNER OF VIDEO
; BLINK

;IF '*' ALREADY THERE,
; CHANGE TO

; BLANK

; STORE

; GET NEXT BLOCK
; CHECKSUM ERROR

;READ ERROR

;STOP TAPE

; TRY AGAIN

;ENDING ADDRESS
;GET ENTRY ADDRESS
; SAVE

; STOP

;PRINT ADDRESSES

; START

; END

;ENTRY

;WAIT FOR KEYIN
;ENTER KEY

;REBOOT IF NOT

;ELSE EXECUTE PROGRAM
;CODE FOR DATA BLOCK
;IF NOT DATA, NOGOOD
; LENGTH

;SAVE IN B

;GET ADDRESS, RETURN
;PRINT MESSAGE

;MASK PARITY

;DONE IF N2

;NEXT LOC

PAGE 124

CASSETTE INPUT AND OUTPUT PAGE 125

JR PRINT ; CONTINUE
PHL LD At ; PRINT
CALL DISP ; TWO
CALL DISP ; SPACES
LD A,H ; PRINT H
CALL HEX ;AND L
LD A,L ; IN HEX
HEX PUSH AF
RRCA
RRCA
RRCA
RRCA
CALL HEX 2
POP AF
HEX2 AND 15
ADD A,30H
cp 3AH
JR C,DISP
ADD A,7
DIsp CALL VIDEO
RET
; FORMATS
FREADY DEFM 'READY CASSETTE'
DEFB 8DH
FCERR DEFM *CASSETTE READ ERROR'
DEFB 8DH
FCHKSM DEFM 'CHECKSUM ERROR!'
DEFB 8DH
FNAME DEFM 'NAME START END ENTRY'
DEFB 8DH
; DATA AREAS
ADR1 DEFS 2 ; START
ADR2 DEFS 2 ; END
ADR3 DEFS 2 ; ENTRY
END START

This program contains four utility subroutines and one
specialized subroutine. The utility subroutines are DISP,
which displays a byte on the video screen (note that it is not
necessary to save DE and IY, because they are not used); HEX,
which prints the byte in A in hexadecimal form; PHL, which
prints two spaces followed by the bytes in H and L in
hexadecimal form; and PRINT, which displays an ASCII message
until a byte with bit 7 set is found. At the end of the
program, there are four messages printed by this subroutine
(FREADY, FCERR, FCHKSM, and FNAME). Each message terminates
in the byte 8DH, which represents the carriage return with bit
7 set.

CASSETTE INPUT AND OUTPUT PAGE 126

The program begins by printing “READY CASSETTE" and waiting
for vyou to type a key. It then prints a message indicating
the information it will give you about the tape it reads (name
and starting, ending, and entry addresses). After getting the
tape going, it checks to see whether the first byte is 55H,
which is the code for file name. If not, the wrong type of
tape is being read. The address of the first block must be
saved for the message later. ©For this reason, the portion of
the program that checks to see if a data block is occurring as
expected, and reads the length and address of the block, is
made into a subroutine (RHD). The block is read and checksum
computed. At the conclusion of the block read, the checksum
computed is compared to that on the tape. If they are not
identical, an error has occurred. Any tape error results in
the program being restarted from the “READY CASSETTE"
message,

The asterisk blinks only at the end of a block. If an
asterisk is already present in the upper right corner of the
video display, it is changed to a blank. Otherwise an
asterisk 1is stored there. After the entry block has been
read, the tape is stopped and the addresses displayed. The
program is then executed 1f you type ENTER.

Suppose that you have a tape written in some non-standard
format that you want to know how to read. How can you
discover what is on the tape? The following program can be
used for this purpose. All it does is read the bytes off the
tape directly into memory, starting at 7@026H (BUFFER). It
never stops, so you must press the RESET button when you think
it is done., After hitting RESET, you can use a program such
as Monitor 3 or 4 or SUPERZAP to examine the contents of
memory and see what is on the tape. This method was 1in fact
used to work out the tape formats described above.

; PROGRAM TO READ A CASSETTE TAPE DIRECTLY INTO MEMORY

DEFDRV EQU 212H

RSYNC EQU 296H

RBYTE EQU 235H

BLINK EQU 3C3FH ; UPPER RICHT CORNER
ORG T0606H

START DI ; SAME AS CMD"T"
XOR A ; START TAPE
CALL DEFDRV
CALL RSYNC
LD DE,BLINK ;SET UP BLINKING
LD B,"*!'
EXX
LD B,' '

BEXX

CASSETTE INPUT AND OUTPUT PAGE 127

LD HL,BUFFER ;WHERE TO PUT DATA
READ CALL RBYTE ;GET BYTE

LD (HL) ,A ; STORE

INC HL ;NEXT LOC

LD A,B ;GET BLINK CHAR

LD (DE) ,A ; BLINK

CALL RBYTE ;NEXT BYTE

LD (HL) , A ; STORE

INC HL ;NEXT LOC

EXX ;GET OTHER BLINK CHAR

LD A,B

EXX

LD (DE) , A ; BLINK

JR READ ; CONTINUE
BUFFER DEFS 1 ; TO END OF MEMORY

END START

You may wonder why it was not possible simply to read the
tape directly to the video display itself, rather than having
to save it in memory. The reason is that the computation
involved in converting the data to hexadecimal form is too
lengthy for the computer to keep up with the 5¢g-baud tape
speed. The computation involved in blinking the asterisk in
this example, which consists of loading an asterisk into B and
a blank into B', and then alternately storing B or B' in the
upper right <corner, is an example of the kind of computation
that can be carried out when reading data from cassettes.

Recently, some companies have been selling programs that
come with a special tape~loading program that uses a
non-standard format, to prevent you from listing or saving the
program. This prevents people from making pirated copies of
the software. The program above, coupled with a disassembler,
can be used to discover the method actually used to load the
programs, and ultimately to read them yourself. Wwhile reading
such tapes is certainly possible, understanding how these
loaders work is a much more complicated task, beyond the scope
of this discussion.

This information is a testimony that there is no mystery of
the TRS-80 is beyond the power of a person who understands
assembly-language programming. Nevertheless, we do not
encourage people to discover how to make pirate copies of
software, which 1is a serious problem in the microcomputer
industry today.

USR SUBROUTINES IN
BASIC PROGRAMS

15.1 USR Subroutines

one of the most practical applications of assembly-~language
programming is to carry out some of the operations of a Basic
program. The USR statement is the means by which assembly-
language subroutines can be <called from Basic. The USR
subroutine must be located at the top of your RAM in order for
it to be protected, and you must set the memory size to the
first location used by the subroutine. Calling a USR
subroutine requires a different procedure in Level II and Disk
Basic.

The procedure for calling a USR subroutine in Level II
Basic is so confusing that there was an error in the first
edition of the REFERENCE MANUAL in the illustration. it is
actually very simple. All you have to do is to put the
address of the location vou want to call into locations 40@8EH
and A408FH as a two-byte integer. The complicated aspect of
this is that the numbers must be POKEd into these locations,
one byte at a time, in decimal form. The decimal equivalent
of 4@8EH is 16526 and that of 4¢8FH is 16527. To know what to
POKE into these locations, you need to convert each byte of
the entry address of the subroutine into decimal form, and
then put the least-significant byte into 16526 and the most-
significant byte into 16527. Suppose that the entry address
is 7DP@H. The first byte is 7D and the second ¢@. 7DH is 125
and 08 1is 4&. You must therefore POKE ¢ into 16526 and 125

128

USR SUBROUTINES IN BASIC PAGE 129

into 16527. Then the execution of a "X=USR(N)" statement will
cause a CALL to location 7DUJ@H to be executed.

This procedure is much simpler in Disk Basic, because there
are ten USR functions and the entry location is set by the
DEFUSR statement. In addition, hexadecimal constants are
allowed. 1Instead of all that conversion from hexadecimal to
decimal and POKEing into 16526 and 16527, all you have to do
is to say DEFUSR@=&H7DP@. If you are using Disk Basic, vyou
probably have 32 or 48K RAM available, and you will therefore
probably locate the subroutines up in high memory, such as
&HFD@Y. for 48K.

One integer (2-~byte) argument, specified in the parentheses
following the USR or USRn, may be passed to the USR subroutine
in the calling statement. Additional arguments may be POKEd
into RAM locations inside the USR subroutine, or anywhere
within the protected memory area.

If you want the USR subroutine to operate upon variables
used by the Basic program, you need to tell it where those
variables are located. This is the purpose of the VARPTR
statement. VARPTR(X) returns the address of the first byte of
the wvariable X. Integer variables require 2 bytes, single-
precision variables 4, double-precision 8, and strings 3 plus
the length of the string (@ to 255 bytes). PEEK(VARPTR(X))
gets the actual wvalue itself, but an assembly-language
subroutine will usually want the address rather than the
data.

The only problem with passing a VARPTR argument to a USR
subroutine comes when you need to pass more than one of thenm,
so that you must use the "POKE" method mentioned above. In
this situation, you have to break down the VARPTR address into
two bytes and POKE them into the respective locations. Here,
you can use an extra integer variable to simplify the process.
In the following example, suppose that you want to pass the
address of the variable X to a USR subroutine by POKEing it
into locations 7FFEH and 7FFFH (32766 and 32767). You can use
an extra variable Y for this purpose:

110 DEFINT Y

120 Y=VARPTR (X)

130 POKE 32766,PEEK(VARPTR(Y))
149 POKE 32767,PEEK(VARPTR(Y)+1)

PEEK (VARPTR(Y)) contains the first (least-significant) byte of
the address of X, and PEEK(VARPTR(Y)+l) the second (most-
significant) byte. Y must be defined as an integer, but X may
be any type of variable. Y can now be re-used in the program,
since it is only needed temporarily.

USR SUBROUTINES IN BASIC PAGE 1390

If the variable whose address you want to pass to the
assembly-language program 1is subscripted, you need only pass
the address of the first location used (usually subscript @ or
1). You can then rely on the fact that if A(@) is stored in
one series of bytes, A(l) will be in the next, A(2) will
follow A(l), etc. The amount that you have to increment the
address depends on the type of wvariable. For 1integers,
single-, and double-precision numbers, this amount is 2, 4,
and 8 bytes, respectively. The data itself 1is stored in these
contiguous locations. For strings, the amount is 3 bytes.
The information stored there is the length of the string in
the first byte and its address in the following two bytes.
The data itself is stored elsewhere, in the string space area
(reserved by the CLEAR statement).

A single argument may also be passed back to the Basic
program. This is stored in the variable on the left side of
the equals sign that has USR on the right. X=USR(#) passes
the argument ¢ to the subroutine, and when it returns, the
value passed from the subroutine back to the Basic program is
stored in X. The HL register pair is used to hold the
argument in both cases.

If you want to pick up the argument when entering the
assembly~language subroutine, you must first CALL @ATFH. To
pass the argument back to the Basic program, you must
terminate the program with a Jjump (JP) to location @A9AH
(2714). If you don't want to return an argument, you simply
RET (return) at the end of your subroutine.

15.2 Sorting a Series of Integers

Sorting an array of numbers is one operation that 1is ideally
suited to an assembly-language subroutine. The following
Basic program generates a series of 100 random integers
(stored in A(@) to A(99)), and then sorts them by means of a
“pubble" sort. (The bubble sort works by taking each value
and comparing it to all remaining values to see if it is
lower. If not, the wvalues are exchanged and the process
ceontinues., in this way, the smallest values “float" to the
top and larger ones to the bottom.) This program requires
about a minute and a half of execution time in Basic (try
itt). The numbers are printed first in unsorted order, and
later in sorted order.

19 REM SORT 1868 RANDOM INTEGERS

20 DEFINT A-Z: N=99: DIMA(N)

3¢ FOR I=@ TO N: A(I)=RND(1@0@): NEXT I
49 FOR I=@ 'TO N: PRINT I;A(I),: NEXT I
50 FOR I=¢ TO N-1

USR SUBROUTINES IN BASIC PAGE 131

64 FOR J=I+1 TO N

70 IF A(I)<=A(J) THEN 90

80 X=A(I): A(I)=A(Jd): A(J)=X

90 NEXT J,1

19¢ FOR I=@ TO N: PRINT I;A(I),: NEXT I

For this sort to be programmed in assembly language, we
need the address of the A array and the value of N. It is an
important aspect of the above program that N is a variable. N
is set to 99 rather than 100 to make use of the A(@) variable.
N can be changed to sort any number of random integers. We
will poke the address of A into locations 7FFEH and 7FFFH
(32766 and 32767), and pass N to the subroutine as the

argument., The following Basic program sets up the sort and
calls the subroutine, located at 7Fg¢gH. We must therefore set
the memory size to 32515. This is a Level II subroutine.

Disk Basic statements are indicated in remarks:

1% REM MACHINE LANGUAGE SORT

20 DEFINT A-Z: N=99: DIMA(N)

3¢ FOR I=f TO N: A(I)=RND(1008): NEXT I

40 FOR I=f TO N: PRINT I;A(I),: NEXT I

50 X=VARPTR(A(@)): POKE 32766,PEEK(VARPTR (X))
60 POKE 32767,PEEK(VARPTS(X)+1)

70 POKE 16526,0: POKE 16527,127

75 REM IN DISK BASIC, REPLACE 7¢ WITH DEFUSR@=&H7FO0Q
80 X=USR(N): REM CALL SUBROUTINE

85 REM IN DISK BASIC, REPLACE 80 WITH X=USR@ (N)
9@ FOR I=¢ TO N: PRINT I;A(I),: NEXT I

The subroutine that this program calls is shown below.
This routine does exactly what the Basic program does and
executes in less than one second. It will sort 1008 integers
in about one minute.

ORG 7004
ENTRY CALL BATFH ;put arg into HL

puUsH HL ;HL=N

POP BC ;transfer to BC

LD IX, (ADRA) ;IX=address of A(I)
ILOOP PUSH BC ;save outer loop index

PUSH IX

POP 1y ;IY¥=address of A(J)
JLOOP INC Iy sA(I+1)

INC Iy

LD H, (IX+1) ;HL=A(I)

LD L, (IX)

LD D, (IY+1) ;DE=A(J)

LD E, (1Y)

OR A ;clear carry

SBC HL,DE ;A(I)-A(T)

USR SUBROUTINES IN BASIC PAGE 132

JR Z ,NEXTJ ;=
JR C,NEXTJ i <
ADC HL,DE ;restore HL
LD (IY+1l),H ;swap A(I)
LD (1Y) ,L ;with A(J)
LD (IX+1),D
LD (IX) ,E

NEXTJ DEC BC ;loop till BC=¢
LD A,B
OR C
JR NZ ,JLOOP
POP BC ;outer loop
INC X ;next I
INC IX
DEC BC
LD A,B
OR c
JR NZ,ILOOP
RET ;donel
ORG TFFEH

ADRA DEFS 2
END

This subroutine makes use of the fact that Level II Basic
integers are standard 16~bit numbers that can be added or
subtracted using the 16-bit arithmetic operations. Sorting
other types of variables requires more complicated algorithms.
The BC register pair is used to contain the index values for
both the outer and inner loops. The value of the outer loop
is saved in the stack while the inner loop is executed.

15.3 Alphabetizing a Series of Strings

Alphabetizing a series of strings is basically the same kind
of problem as sorting a series of integers, except that the
strings may be of different lengths. The following Basic
program builds 16¢ random strings of 1 to 5 characters and
then alphabetizes them. This process requires about two and a
half minutes to execute in Basic:

10 REM SORT 108 RANDOM STRINGS

29 CLEAR 1000: DEFSTR A: DEFINT B-Z

380 N=99: DIMA(N)

49 FOR I=@ TO N: A(I)="" : REM INITIALIZE STRINGS

5@ J=RND(5): FOR K=1 TO J: BUILD STRINGS OF 1-5 CHARS
60 A(I)=A(I)+CHRS(RND(26)+64)): NEXT K,I

70 FOR I=@ TO N: PRINT I;A(I),: NEXT I

8¢ FOR I=f TO N-l1l: FOR J=I+1 TO N

99 IF A(I) <= A(J) THEN 110
108 X$=A(I): A(I)=A(J): A(J)=X$

USR SUBROUTINES IN BASIC PAGE 133

119 NEXT J,1
12¢ FOR I=@ TO N: PRINT I; A(I),: NEXT I

To carry out the sorting function in assembly language, we
have to remember that, for string values, VARPTR(AS) returns
an address pointing to the LENGTH of the string, and the
ADDRESS of the string is in the next two bytes. The program
above can be revised as follows, to set up the call to a USR
subroutine to do the alphabetizing:

19 REM ALPHABETIZE STRINGS IN ASSEMBLY LANGUAGE

20 CLEAR 10¢0: DEFSTR A: DEFINT B-Z

3¢ N=99: DIM A(N)

40 FOR I=p TO N: A(I)="": REM INITIALIZE STRINGS
58 J=RND(5): FOR K=1TO J: BUILD STRINGS OF 1-5 CHARS
60 A(I)=A(I)+CHRS(RND(26)+64): NEXT K,J

70 FOR I=@ TO N: PRINT I; A(I),: NEXT I

80 X=VARPTR(A(#)): POKE 32766,PEEK(VARPTR (X))

90 POKE 32767, PEEK(VARPTR(X)+1)

1¢@6 POKE 16526,0: POKE 16527,127

185 REM IN DISK BASIC REPLACE BY DEFUSR@=&H7F@0

119 X=USR(N): REM IN DISK BASIC REPLACE BY X=USRf(N)
12@¢ FOR I=§ TO N: PRINT I;A(I),: NEXT I

The assembly-language subroutine is as follows:

ORG TFGOH
ENTRY CALL AATFH ;put n into HL
PUSH HL ;jmove N to BC
POP BC
LD IX, (ADRA) ; IX=VARPTR(A(I))
ILoOoP PUSH BC ;save I (outer loop)
PUSH IX
POP 1Y ; IY=VARPTR(A(J))
JLOOP PUSH BC ;save J (inner loop)
INC 1Y
INC Iy
INC 1Y
LD B, (IX) ;B=length of A(I)
LD C, (1Y) ;C=length of A(J)
LD L, (IX+1) ;HL=address
LD H, (IX+2) ;0f A(I)
LD E, (IY+1) ;DE=address
LD D, (1Y+2) ;0F A(J)
COoMP LD A, (DE) sA=char in A(J)
Ccp (HL) ;jcompare to A(I)
JR C,SWAP ;swap if <
JR NZ ,NEXTJ ;1£ NZ, continue
INC DE ;try next char
DEC C :length of A(J)

JR Z ,SWAP ;if Z, no more chars

USR SUBROUTINES IN BASIC PAGE 134

INC HL ;A1)
DJNZ coMp
JR NEXTJ ;if Z, order OK
SWAP LD B, (IX) ;swap strings
LD L, (IX+1) ;by changing
LD H, (IX+2) ;pointers
LD C, (1Y)
LD E, (IY+1)
LD D, (IY+2)
LD (Ix),c
LD (IX+1) ,E
LD (IX+2),D
LD (Iy),B
LD (Iy+1l),L
LD (Iy+2) ,4
NEXTJ POP BC ;loop till
DEC BC ;BC=0
LD A,B
OR C
JR NZ ,JLOOP
NEXTI POP BC ;outer loop
INC IX ;next I
INC IX
INC IX
DEC BC
LD A,B
OR C
JR NZ , ILOOP
RET ;donel
ADRA EQU TFFEH
END

This subroutine alphabetizes 180 strings 1in about one
second, and 5@ strings in about 25 seconds. Running the
program with the assembly-language subroutine shows that it
takes Basic much longer to build the random strings than it
does to alphabetize them. This is an excellent example of the
efficiency that can be achieved by using assembly-language
subroutines to do the tasks that they are ideally suited for.

DISK INPUT AND OUTPUT

This chapter 1is intended to provide basic information about
the operation of the TRS-8@'s floppy disks. It covers the
fundamentals and input-output operations, while chapter 17
presents details about the Disk Operating System and disk
files. Much information about the disks is contained in Radio
Shack's TRSDOS & DISK BASIC REFERENCE MANUAL. In addition,
there are other books devoted exclusively to the disk, such as
Harvard C. Pennington's TRS-8¢ DISK & OTHER MYSTERIES and
william Barden's MICRO APPLICATIONS TRS~8f DISK INTERFACING
GUIDE.

16.1 Disk Basics

The title of this section is “Disk Basics", not “Disk Basic".
Basic is the main programming language of the TRS-8¢, and when
you add a disk to the computer you have a large number of
additional features available. Here we are covering
preliminary information for the operation of the disk, and our
discussion has nothing to do with the Basic language. 1In a
sense, the TRS5-8¢ is not a complete computer without a disk.
Software to read the disk is contained in the ROM, and it is
only when the configuration is tested and found not to contain
a disk that Level II Basic is entered.

Everyone who owns a disk 1is familiar with the terms
*tracks", *“granules”, and ‘“sectors", but if you aren't

135

DISK INPUT AND OUTPUT PAGE 136

familiar, then this information is new to you. The disk DRIVE
is the piece of hardware into which a DISKETTE is inserted.
The fact that the diskette can be removed is a vital aspect of
its operation, The diskette 1is a round magnetic device
similar to a phonograph record, except that information is
recorded on it magnetically, and it is flexible or pliable and
bends easily. It spins at approximately 300 RPM inside the
paper wrapper in which it is kept. The magnetic impulses are
read or written by a HEAD, which makes contact with the
diskette through the oval-rectangular hole at the interior of
the diskette. The diskette should always be handled carefully
and replaced in its paper sleeve when not being used.

The surface of the diskette is divided into 35 concentric
circles called TRACKS. (The fact that the inner tracks have a
smaller surface area is of no concern to the operation of the
system.) Each track is in turn divided into ten SECTORS. 256
bytes of data can be stored on each sector, and thus 2560
bytes on each track. The entire capacity of the diskette is
35 x 2560 = 89,600 bytes.

Other floppy disk systems may employ a different
organization of the diskette, although the method wused by
Radio Shack is quite common. There are presently two kinds of
floppy disk drives: eight—inch or standard disks and five-
and-one-fourth inch or mini disks. The TRS-8f uses the mini
disks, although the TRS-80 model II uses standard disks. The
capacity of an 8—inch disk (over 500,008 bytes) is
significantly greater than that of a mini disk.

Other disk systems may use 4@ or 77 tracks on the diskette,
and sometimes each track is divided into 16 sectors rather
than ten. The TRS-80 uses SOFT-SECTORED diskettes, which
means that there is only one little hole that must be sensed
to find the beginning of the first sector on the diskette.
The other sectors are found by sensing magnetic impulses that
are written on the diskette when it is formatted. Formatting
is something that you must do (by running a special program)
to a new diskette before vyou use it the first time.
Hard-sectored diskettes have either ten or 16 different holes
that must be sensed by the disk controller.

16.2 The Disk Operating System

When vyou power up or "boot" a TRS-80 containing a disk, the
computer expects that the diskette in the first drive,
referred to as the “"system" diskette in drive "“zero", contains
special information in the first sector of the first track.
This track is part of a file called "BOOT/SYS", which contains
a program that in turn reads much more information from the

DISK INPUT AND OUTPUT PAGE 137

disk into memory. Only the first sector of this file is
actually used for the bootstrap loader. Sectors 2-3 of the
file contain an encoded copyright notice, which is displayed
if you type "BOOT/SYS.WHO" and hold down the "2" and "6" keys
simultaneously. Sectors 4-5 contain tables.

The program read into memory at power-on or reset is called
the DISK OPERATING SYSTEM (DOS), and it is used for all disk
input-output and some other functions. Radio Shack provides a
DOS called TRSDOS, of which there have so far been four
versions numbered 2.0 through 2.3. Several others are
available from other companies. The most important of these
are NEWDOS and NEWDOS8§ available from Apparat, Inc.; and VTOS
3.9, available from virtual Technology, Inc.

The DOS is organized into a series of “system” files
referred to as SYS@ to SYS6, and some DOSs have file names up
to 8YS13. The reason for this organization 1s that there is
not enough room in memory to have all functions available at
all times, so the DOS automatically reads in what it needs
when it needs 1it. The portion of memory used by the DOS
extends approximately from locations 42@0H through 52¢@H, and
it 1is analogous to the ROM in that this information must not
be disturbed by the programmer. Inclusion of the DOS on the
system diskette takes up a significant portion of its 89K
bytes, leaving only about 55K (46K when including BASIC and
utilities) for user programs and data.

The main purpose of the DOS is that it allows you to refer
to data on the disk as FILES rather than by tracks and
sectors. A file contains as many sectors as it needs to
contain, as long as they are all on the same diskette. It may
be split up among various tracks all over the diskette, but
you never have to worry about this even though you can refer
to the individual sectors of the file. The D0OS allocates
space to the files in terms of GRANULES, consisting of five
sectors or half a track each., A minimum of five sectors is
allocated, even if you need only one. To keep the allocation
of space straight, the DOS reserves track 17 (purposely in the
middle of the diskette so that the head never has to move more
than half its width) as a DIRECTORY track. This track
contains the name of each file and all the information
relating to its space allocation, and also tables called the
HASH INDEX TABLE (HIT) and GRANULE ALLOCATION TABLE (GAT).
These will be explained in Chapter 17.

While the organization of the disk into files does waste
some of the space, it makes accessing the data on the disk
very easy for the programmer. The DOS handles all of the
input-output operations as well as the bookeeping.

DISK INPUT AND OUTPUT PAGE 138

To understand how to use the disk, you need to know the
basic operations of the disk, which have nothing to do with
the file structure, and you also need to know how to use the
DOS, which is one of the most important aspects of the
computer. Because Disk Basic spends much of its time
converting data into and out of strings, it is very slow and
inefficient in its use of disk input-output operations. The
true power of the disk can only be realized through
assembly~language programming.

16.3 The Disk Controller

The heart of the TRS~80's disk system is the Western Digital
FD1771B-¢1 floppy disk controller chip, contained in the
expansion interface. The disk drive used by Radio Shack is
the Shugart SA490. Many drives made by other companies have
also been used successfully, and are compatible with the
Shugart SA4¢@. The disk controller chip is interfaced to the
TRS-8@% by being directly connected to memory locations 37E@H
and 37ECH to 37EFH. This is to say that all disk input-output
operations are effected by storing or reading various bytes in
these locations.

To read or write from the disk, you must first SELECT the
appropriate disk drive. This turns on the drive motor and
leaves it running for about three seconds. All subsequent
disk operations are directed to the drive selected. To select
a drive, a value specifying the drive must be stored in
location 37EQH (14304). The values 1, 2, 4, and 8 specify
drives ¢, 1, 2, and 3, respectively. The sequence of
operations:

LD A,1
LD (37E04) ,A

selects drive zero. Storing a wvalue representing a
combination of these values, such as 3, which combines drives
p and 1, selects two or more drives simultaneously, although
no standard software makes use of this feature (and it is
probably unreliable).

The basic commands that may be issued to the disk
controller chip allow vyou to position the head and read or
write data. The basic commands are as follows:

l. Restore: move the head to track zero.

2. Seek: find the currently specified track.
3. Step: step the head in the last direction.
4. Step In: step the head one track in.

5. Step Out: step the head one track out.

DISK INPUT AND OQUTPUT PAGE 139

Read: read one byte of data.

Write: write one byte of data.

Read Address: read ID field.

Read Track: read entire track.

Write Track: write entire track.
Force Interrupt: terminate operation.

RO Oa,
e s o o

"

1
1

The disk controller contains various registers and status
indicators. Location 37ECH (14316) is the COMMAND register.
Most disk operations are accomplished by loading the proper
value into this location, once a drive has been selected.
Another is the STATUS register, which is used to test whether
a previous operation has been completed and whether the disk
is ready for another command or for data. The status register
is read by reading location 37ECH, the same as the command
register. 37EFH (14319) is the DATA register. Data 1is read
from the diskette in serial order, and always passed into or

out of this location in quantities of one byte. The data
register 1is also used to hold various other values when
commands are issued. Other registers include the TRACK

register, which is at location 37EDH (14317), and the SECTOR
register, at location 37EEH (14318). They hold information
about the track and sector currently being used.

Most disk commands are executed by simply storing a
particular wvalue into location 37ECH. The following table
shows the values that must be loaded in order to accomplish
the functions indicated:

Value Function value Function

@ 3H restore ABH write data byte

13H seek ASH write byte on

33H step last directory track
direction C2H read address

53H step in E4H read track

73H step out F4H write track

88H read byte D@H force interrupt

To be sure, other values may be used to perform these same
functions with minor differences in operation, but these are
the values normally used for these operations on the TRS-80.

When data is read or written from a disk, the cpu mnmust
continually be ready to respond to the disk controller. All
other operations must be 1locked out,. Interrupts must be
disabled, and the cpu must be in a loop, testing the status of
the controller. Since disk operations are usually very fast,
this 1is a minimum amount of overhead, but it does mean that
the TR3-8¢ cannot be used in certain real-time applications
where it nmust be ready to respond to external conditions.

DISK INPUT AND OUTPUT PAGE 1490

One other point about the disk system is that the presence
of the write protect tab does nothing but set a bit in the
status register. The protection of data on write-protected
diskettes is entirely a function of the software.

16.4 Disk Operations

After selecting the drive, the first operation we might want
to perform might be a restore, which moves the head to track
zero. This is accomplished by storing the value 3 in location
37ECH (14316). We must then test the wvalue in 37EC to
determine whether the disk has completed its operation. When
bit zero of this location goes to zero, the operation is
finished and the head is positioned over track zero. As long
as it remains a one, we must wait before performing any
further disk operation.

One way of locating any track on the disk is to move the
head to track zero, and then step in until the desired track
is found. The step-in operation is done by storing the wvalue
53H (83) in location 37ECH. Conversely, stepping out is
performed by storing the value 73H (115) in 37EC, and stepping
from the last direction by storing 33H (51) in the same
location. After performing a step operation, we again must
test the status of the disk and wait until the operation is
complete, To verify what track the head 1is <currently
positioned over, we can read the track register by simply
loading the contents of location 37EDH (14317).

A better way of finding a particular track is to use the
seek command, which automatically wpositions the head to a
specified track. To use this command, the track number (@ to
34) must first be loaded into location 37EFH (14319), after
the drive has been selected. The sector can also be specified
by storing the sector number in 37EEH (14318). Seek is then
executed by storing 18H (27) into location 37ECH.

All of the above head-positioning operations may be
accomplished 1in Basic, by simply POKEing and PEEKing into the

proper locations., The following Basic program selects drive
zero, restores it to track zero, and then asks you to specify
a track number. The head is then positioned over this track
by means o¢f the seek command, and the track number is read
from the track register and printed, to verify that the proper
track has been located. Then the program returns and asks you
for a new track. The subroutine at statement 158 tests the
status of the last operation and waits until it has been
completed.

DISK INPUT AND OUTPUT PAGE 141

1l¢ POKE 14304,1 select drive zero
20 POKE 14316,3 restore to track zero
38 GOSUB 159 wait until done

4¢ INPUT"“TRACK #*;T get track #

50 POKE 143¢4,1 select again

68 POKE 14319,T output track #

7¢ GOSUB 1549 wait

8@ POKE 14316,19 seek

90 GOSUB 15¢ wait

100 A=PEEK(14317) read track register
114 PRINT A print it

120 A=PEEK(14316) get status

138 PRINT A print status

149 GOTO 440 try another track
150 A=PEEK(14316) test status

169 IF (A AND 1) <> ¢ THEN 150 loop if busy

178 RETURN done

One impression you may have when running this program is
that the disk finds the proper track almost immediately, and
if you do not input a new track number within three seconds,
the drive motor is turned off. It is true that the head can
be positioned over any track in no more than a couple of
seconds, but this speed is nothing when compared to the rate
at which data is read or written from the disk. The latter is
so fast that it cannot be done in Basic at all.

Reading and writing of data on the disk is normally done
with only the read and write byte commands, on a single sector
at a time. The read track, write track, and read address
commands are usually used only in formatting the disk, but it
is possible to read and write entire tracks of data. The read
and write byte commands can also read and write multiple
sectors (from 2 to 9), although this feature is almost never
used. Finally, note that the directory track must be written
with a different code, although it can be read as any track.
This property 1is used to protect the status of the directory
track, without which the DOS cannot function, as well as to
distinguish the directory from the other tracks.

Reading or writing data can only be done after a seguence
of operations such as shown above has been executed. Once the
disk has been selected and head positioned, the status must be
continuously tested. When it indicates that a byte is ready
to be read from the data register, the byte must be taken and
stored 1in the buffer immediately, and the process repeated
until the entire sector or track has been read.

To illustrate how this works, let us examine the portion of
the ROM that reads the “BOOT" file from the system drive into
MNemory. BOOT itself is a "bootstrap loader", which loads in

DISK INPUT AND OUTPUT

PAGE 142

the rest of the DOS once it is entered. This program starts

at

location 9696H in the ROM.

What follows is a disassembled

listing of the ROM to which comments have been appended:

8696 LD A, (37ECH) ;test

2699 INC A ;disk

g69A cp 2 ;status

g69cC JP C,8075H ;9o to Level II if no disk
B69F LD A,l ;drive zero

BoAl LD (37E1H) ,A ;select it

poad LD HL, 37ECH ;command and status address
@6AT LD DE,37EFH ;data address

B6AA LD (HL) , 3 ;restore command

BE6AC LD BC, 0 ;delay 64K times

P 6AF CALL 60H ;ROM delay routine

geB2 BIT @, (HL) ;test status

poB4 JR NZ ,06B2H ;wait if busy

p6B6 XOR A ;zero A

g6B7 LD (37EEH) ,A ;select sector ¢

B 6BA LD BC,4200H ;where to put data

26BD LD A,8CH ;read command

@ 6BF LD (HL) ,A ;read sector zero

36Cg BIT 1, (HL) ;test status

p6cz2 JR Z,06C0H ;walt until ready

ge6C4 LD A, (DE) ;read byte

#6C5 LD (BC) ,A ;store in 42¢9pH ££

36C6 INC C ;increment pointer

g6C7 JR NZ,086CQH ;continue until 256 bytes read
#6CH9 Jp 42064 ;jump to DOS bootstrap loader

This listing illustrates many aspects of how disk input and
output programming works.

The double registers BC, DE, and HL

are always loaded with addresses that are used in fetching and
storing data, because instructions like “"LD A,(HL)" are faster
to execute than “LD A, (37EFH)", and the address can be changed
by an INC instruction. In this example, "INC C" is used
rather than "INC BC" because it sets the condition codes and
only 256 bytes are being read.

16.5 Disk Input/Output Subroutines

We now have enough information to write generalized disk read
and write subroutines. At this point it is necessary to
mention that all TRSDOS routines have curious time-wasting
instructions such as:

PUSH AF
POP AF

after various disk operations are performed. Presumably these

DISK INPUT AND OUTPUT PAGE 143

are included either because of undocumented problems with the
disk controller chip, or as a precaution.

The following subroutine reads a single sector from the
diskette in drive zero. The track and sector is specified in
the DE register pair, D indicating the track and E the sector,
and the buffer where incoming data is to be stored is in BC.
The “AND 5CH" tests for various errors that may occur during
the operation, and terminates it by a force interrupt
instruction if an error occurs.

RDSECT DI ;disable interrupts
LD A,l ;drive zero
LD (37E0H) ,A ;select
PUSH BC ;save BC
LD BC,0 ;wait 64K times
CALL 60H " ;ROM delay subroutine
POP BC ;restore BC
LD HL,37ECH ;jcommand register address
LD A,l ;select again
LD (37E@QH) ,A
LD (37EEH) ,DE ;specify track & sector
LD (HL) ,13H ;Seek
PUSH BC ;waste time
POP BC
PUSH BC ;waste move time
POP BC
WALT LD A, (HL) sget status
RRCA ;busy bit to carry
JR C,WAIT ;wait until done
DSKCM LD (HL) ,88H ;read byte command
LD DE,37EFH ;data register
JR RDLOOP ;start reading
BUSY RRCA ;busy bit to carry
JR NC,TSTERR ;1f not busy
RDLOOP LD A, (HL) ;get status
BIT 1,A s test
JR Z,BUSY ;wait if busy
DSKIO LD A, (DE) ;get byte
LD (BC) ,A ;store in buffer
INC BC ;increment pointer
JR RDLOOP ;continue
TSTERR LD A, (HL) ;get status
AND S5CH ;test errors
RET Z ;done if no errors
LD (HL) ,9DdH ;force interrupt
CALL ERRMSG ;print error message
RET ;done

Disk write subroutines are handled in much the same way,
except that the data register must first be loaded with a byte

DISK INPUT AND OUTPUT PAGE 144

and the status then checked to determine if the controller is
ready for the next byte., 1In fact, exactly the same subroutine
as above could be used if the instruction at DSKCM is changed
to:

LD (HL) ,0A8H ;write byte
and the two instructions at DSKIO are changed to:

LD A, (BC) ;get byte
LD (DE) ,A ;store in data register

It must be understood that this discussion is an
oversimplification of the entire process, although it does
serve to provide information that will be satisfactory for
most purposes.

16.6 TRSDOS Input-Qutput Subroutines

There 1is little reason to include much information about the
TRSDOS input-output subroutines, because this information is
covered well and in detail in Radio Shack's TRSD0OS & DISK
BASIC REFERENCE MANUAL. All known DOSs use the same
subroutine calls.

File handling is controlled through & data control block or
DCB. Before the file is opened, the DCB contains the complete
name of the file (including the extension, password, and drive
number) . When the DCB is open, other information is stored
there. When open, the most important items in the DCB are the
EOF (offset of last delimited in last record), LRL (logical
record length), NRN (next record number to read or write) and
ERN (ending record number). These are located at DCB bytes 8,
9, 1p-11, and 12-13, respectively.

One of the basic ideas behind these subroutines is that, by
setting the logical record length when opening the file and
POSN to position it, records of any length (up to 256 bytes)
may be read or written. The DOS takes care of any problems
arising from the fact that these records may span two sectors
in the file. Recent DOSs such as VTOS 3.4 and NEWDOS88
incorporate this feature 1in Basic programming. With other
DOSs, it can only be accessed through assembly-language
programming. In most cases, an entire sector is read or
written at one time. LRL is set to zero for this purpose.

All TRSDOS subroutines require that the address of the DCB
be loaded into the DE register pair before the system call is
made, and the zero flag is set on exit to indicate whether the
operation was successful. If there was an error (i.e., 1f NZ

was set),

DISK INPUT AND OUTPUT

A contains the error code.

PAGE 145

Other calling parameters

are noted for the individual subroutines, which are as
follows:
Namne Address Function Calling Parameters
INIT 4420H Create file if HL => buffer
none exists. B = LRL
OPEN 44244 Open existing file. Same as for INIT
POSN 4442H Position file, BC = logical record
if LRL <>0 number
READ 4436H Read record. HL => UREC if LRL<>0
WRITE 4439H Write record. Same as for READ
VERF 443CH Write record with Same as for READ
verify.
CLOSE 4428H Close file.
KILL 442CH Kill file.

While the information in the manual is mostly complete, the
following errors and incompatibilities should be noted:

ERN contains the last record number when a file is opened.
Following a write operation, it contains the number of the
record just written. When writing a record into the middle of

a file, ERN must be fixed before the file is closed.

The error message subroutine at 44094 sometimes prints
messages of an incorrect 1length, producing a message that
scrolls off the video display before you can read it. it is

best simply to print the error number, or to include error-
recovery procedures in user programs.

There is a major incompatibility between all versions of
TRSDOS and NEWDOS and NEWDOS8¢ concerning the way in which the
EOF, ERN and NRN parameters in the DCB are maintained. When
operating under NEWDOS or NEWD0S8@, ERN contains the ending
record number only when the EOF 1is on a sector boundary.
These details are described in Apparat's “ZAP" documentation,
which gives a list of corrections for NEWDOS version 2.1l., and
in the NEWDOS8#¢ documentation.

17.1 The Disk Directory

The disk directory, normally placed on track 17 unless that
track is 1locked out, is the key to understanding the entire
file structure on the diskette, Unfortunately, Radio Shack
has never released many details about these technical matters,
but much useful information is contained in the documentation
for Apparat's NEWDOS and NEWDOS808, and in H.C. Pennington's
TRS~-80 DISK & OTHER MYSTERIES.

The first two sectors of the directory track contain the
Granule Allocation Table (GAT) and Hash Index Table (HIT).
The remaining eight tracks contain directory entries, either
primary entries ("FPDE" for “File Primary Directory Entry") or
extension entries ("FXDE" for "File Extension Directory
Entry"). Each entry is 32 bytes long. There 1is thus a
maximum of eight entries per sector and 64 entries (which may
mean less than 64 files) on the diskette. (Why the DO0OS allows
a maximum of 5% files on a formatted diskette and 64 on a
system diskette is unknown.) All of this data 1is quite
straightforward to interpret if you know how.

146

DISK FILES PAGE 147

17.2 The GAT Sector

The GAT sector contains two tables indicating the space
available for files on the disk and whether any tracks are
locked out. In addition, it contains the hash code for the
diskette's password, the diskette name and date, and the AUTO
command file that is to be called on power on or reset. All
passwords are encoded in a "hash code" explained below (see
section 17.6).

The first 96 bytes of the GAT sector (bytes @@ to 5FH)
contain the Granule Allocation Table itself. Since the Radio
Shack disk drives use only 35 tracks, only the first 35 bytes
(689 to 22H) are actually used, although the DOS contains
provision for expansion up to 96 tracks on the disk. Each
byte simply 1indicates whether one or both granules on the
track is free or already allocated to a file, according to the
following table:

binary hexadecimal meaning
11111108 FC both granules
(sectors @-9) free
11111191 FD only first granule
(sectors @g-4) allocated
11111119 FE only second granule
(sectors 5-9) allocated
11111111 FF both granules

(sectors @-9) allocated

The next 96 bytes contain the Track Lock Out Table. This
table is exactly the same as the GAT, only its function is to
tell the DOS whether a track can be used at all. The purpose
of these tables is to make it simple for the DOS to Kknow how
much space it has available and where the space is.

Why would a track be locked out? There are several
reasons, 1t can be locked out because the track could not be
verified during a FORMAT or BACKUP operation. You may also
want to use special software, such as that described in
Chapter 16, to write certain tracks and therefore not make
them available for the DOS.

The final 64 bytes of the GAT sector contain a variety of
miscellaneous information. The password hash code is in bytes
CE-CFH. The diskette name and date are in bytes D@ to DF;
each of these requires exactly eight bytes. Finally, the AUTO
command file is in E@-FF, indicated simply as a command
followed by a carriage return. The absence of a command is
indicated by placing a carriage return in byte E@. The
remaining bytes are filled with FF. A map of the entire GAT
sector is shown below.

DISK FILES PAGE 148

"GAT" Sector Map (Track 17, sector g)

g 1 2 3 4 5 6 7 8 9 A B C D E F

%] & e e s i v e e GRANULE ALLOCATION TABLE e e o o e
LB o o e o o
20 —— e e >

30 (unused)

49 (unused)

59 (unused)

60 € o o e e TRACK LOCK OUT TABLE-~-—-——we————
T e o e o o e e e
80 em———— >

9¢ (unused)

AQ (unused)

B@ (unused)

CO Kmmmmmmmmmmmm e (UNKNOWN) = = o oo om o e o ><PSW>
DB Km—mmmemm DISKETTE NAME AND DATE———=——m=—m——= >
o B T "AUTO" COMMAND FILE====—===—=————
Ff o o o e e e e e o o o e e >

17.3 The "HIT" Sector

The HIT sector (sector 1 of the directory track) contains
information concerning each file name in the directory. Only
the first eight bytes of each 32-byte segment of the sector
are used. Each file name in the directory has a single byte
of hash code 1in the table. The POSITION of the byte in the
table relates to its address 1in the direktory. The last
hexadecimal digit (g-7) plus 2 gives the sector number in the
directory track where the file entry is stored, and the first
digit (only even wvalues from @ to E) times 16 gives the
relative byte where the entry starts within the sector. The
following map shows the correspondence between the HIT sector
and the directory entries:

0 1 2 3 4 5 6 7 + 2 = sector
g0 200 300 400 500 o600 700 800 900 (bytes 8-F unused)
20 220 320 420 520 o620 720 820 920
4¢ 240 340 440 540 640 740 840@ 940
60 260 360 460 560 660 760 860 960
80 280 380 480 580 680 780 880 98¢
A 2A0 3A0 4AQ0 SAQ0 6A0 7AQ 8AQ 9AQ
C@ 2C@ 3Cg 4Cg 5CP o6CP 7C@P 8CH 9Co
E@ 2EQ 3EQ 4E0 S5E@ 6EQ@ 7EQ 8EQ 9EQ

*16 = byte

In this map, a number like “28@" means "sector 2, byte 8gH" of
the directory track. Each directory entry is 32 bytes long.

DISK FILES PAGE 149

If you look at a listing of a HIT sector for a particular
diskette, you may notice that some of the codes for different
files are identical. This is perfectly normal, and simply
means that the number produced must correspond to the <code
derived from the name of the file. It does not mean that all
codes must be unique. The purpose of the HIT sector 1is to
tell the DOS where active entries are located within the
directory, and then to verify that these entries correspond to
the files specified. A zero in the HIT byte means that no
entry is stored in the directory.

17.4 File Primary Directory Entries (FPDESs)

The bulk of the directory track, sectors 2-9, is reserved for
file entries. Almost all of these are FILE PRIMARY DIRECTORY
ENTRIES or FPDEs, A FILE EXTENSION DIRECTORY ENTRY or FXDE
occurs only when a particular file is not only very large, but
also split among more than four separate extents. In the
remaining discussion we will refer to directory entries by
their shorthand names, FPDEs or FXDEs.

Each FPDE or FXDE is 32 bytes long, the same as the TRSDOS
DCBs. The purpose of the FPDE is to provide information on
the name of the file, what type of file it is, whether it has
update or access passwords, and where it is located. The FXDE
gives additional information on where the file is located.
Since space is always allocated in terms of granules, this 1is
the most complicated aspect of the entries.

The way space allocation works is as follows: when the DOS
allocates a granule to the file, it checks to see that this is
the first free granule following used space. As sectors are
added to the file, additional granules are allocated following
the first one, until a sector is encountered that 1is being
used by another active file. At this point the DOS issues
another extent to the file, which begins with another granule
on a completely different track and sector. The more files
that are added to a diskette, the more complicated the space
allocation becomes, It is quite common for files to have
several extents on different tracks, jumping all about the
diskette. There is room for four extents in the FPDE and four
more in each additional FXDE.

The information 1in the FPDE is quite specific, and can be
summarized in tabular form:

Byte
{hex)

DISK FILES PAGE 150

Meaning

[/

D-F
19~-11
12-13
14-15

16-1F

File Type: Bit
Bit
Bit
Bit

@=FPDE, 1=FXDE
l=system file, @=non-system file
unused
l=file exists in HIT sector,
g = file killed
Bit 3: 1l=invisible file, @=visible
Bits @-2: protection level, according to
the following code:
no access
execution access only
read and execute only
write, read, execute
(unused)
rename, write, read, execute
kill, rename, write, read,
execute
§ = no restrictions

& UT O]
s 20 s s

w

(111 binary=)

o

L O |

7
6
5
4
3
2
1

]

Unused by FPDE.

End of File (EOF) byte: 1last byte used in last
sector of the file.

Logical Record Length (LRL): this concept is used
only by VTOS 3.8 and NEWDOS80.

File Name: 8 characters, padded with blanks on the
right if necessary.

Extension: 3 characters, padded with blanks as name.

Update password, stored as 2-byte hash code.

Access password, stored as 2~-byte hash code.

EOF Relative Sector: 1if the EOF byte (3) contains
zero, then this byte is the relative sector
count of the file; but if byte 3 is non-
zero, then it contains the relative count
plus one. Since a file may contain more
than 256 sectors, this entry is a two-byte
word, stored in reverse (LSB/MSB).

Five 2-byte pairs specifying EXTENTS:

1st byte: 1if FF (255), signifies end of extents.

if FE (254), then 2nd byte contains a
DIRECTORY ENTRY CODE (DEC) pointing
to an FXDE that contains additional
extent information.

if 9-22 (#-34), TRACK NUMBER on diskette
where this entry starts.

2nd byte (if 1lst byte <254):
bits 5-7: number of granules from start of

track to start of eptent (¢ or 1).
bits @-4: number (-1) of contiguous granules
assigned to this extent.

DISK FILES PAGE 151

The first byte of the file extent is easy to read. It is
simply the track number. The second byte must be broken down
into bits, but the following simple rules apply:

1. If this byte is @-19H, the extent starts at sector
zero,

2. If it is 20H or greater, the extent starts at sector
five. In this case, subtracting 20H from the value in this
byte will give you the granule count.

Let us clarify the extent bytes with some examples:

(a) 12 g9 The extent begins on track 12H (18), sector
zero., One granule is assigned to the extent.

(b) 95 21 The extent begins on track 5, sector 5.
Two granules are assigned to this extent.

(c) 15 23 The extent begins on track 15H (21), sector
5. Four granules are assigned to the extent.

(d) 13 3¢ The extent begins on track 13H (19), sector
5. 17 granules are assigned to this extent.
17.5 File Extension Directory Entries (FXDEs)
FXDEs contain only information about file extents, and a

pointer to the FPDE. All remaining data about the file is in
the FPDE. The bytes used by the FXDE are as follows:

Byte Meaning
[7} > 80H (Bit 7=1 for FXDE)
1 DEC to FPDE (see below)
2-15 unused, and should contain zeros.

16-1F Extents, same as in FPDE.

If byte 36 of the FPDE contains the value FE (254), then
byte 31 contains a DIRECTORY ENTRY CODE (DEC) pointing to the
FXDE. Similarly, byte 1 of the FXDE contains a DEC pointing
back to the FPDE. If you recall the information about the HIT
sector, all directory entries are stored in 32-byte blocks in
sectors 2-9 of the directory track. The DEC byte is decoded
as follows:

Bits @g-2 + 2 = the sector containing the FXDE (or FPDE).
Bits 3-4: unused.
Bits 5-7 = the number of the entry within the sector.
(There are 8 32-byte entries in each sector,
nunbered 9-7.)

DISK FILES PAGE 152

The following examples may help clarify how to decode
DECs:

Hex Binary Meaning
(a) 40H 310 00 000 sector 2, entry 2 (the THIRD
entry, starting from g).
This entry is in bytes 4@-5FH
(64-95) of the sector.

(b) A6H = 101 40 110 sector 8, entry 5, stored in
bytes A@-BFH (164-191).
(c) 83H = 100 00 011 sector 5, entry 4, stored in

bytes 8¢-9FH (128-159).

17.6 Passwords and Hash Codes

“Hash code" 1is a term describing the process for taking a
character string and converting it into an encoded value.
Each byte of the string 1is multiplied by some value. The
codes are then added together to produce the hash. Different
strings may produce the same values, and there are hundreds of
different hashing methods.

All passwords stored in the directory track are stored in
hash code, so that you cannot simply read the sectors and find
out what they are. If you want to read a file that is
protected by a password that you don't know, the easiest
procedure 1is to modify the diskette directory so that it
contains a password that you do know. The password for a
string of all blanks, indicating no password, is 96 42. Both
the SUPERZAP and MON4 programs contain procedures for
modifying disk sectors independent of the file structure.

If you want to find out the hash code for a particular
password, vyou need to know the formula used by Radio Shack.
The password, a string of 8 bytes padded with blanks on the
right, is operated on according to the polynomial

X*E*16 4+ X*¥*12 + X**5 +

and the numerical result 1is the two-byte hash code. The
following program allows you to input a password or exactly
eight bytes (no backspacing permitted!), and then displays the
hash code:

ORG TO000H
START CALL 81C9H ;clear screen
LD A,l4 ;cursor on

CALL 33d

DISK FILES PAGE 153

NEXT LD A, 2! ;print prompt
CALL 33H
LD HL, PASSWD ;buffer
LD B,8 ;8 bytes
INPUT CALL 49H ;input string
LD (HL) ,A
CALL 33H ;display
INC HL
DINZ INPUT
CALL CR ;print carriage return
LD HL, PASSWD+7
LD DE, l1E@CH ;initial code
LD c,8 ;8 characters
JR L4
L1 LD B,8
L2 RR D
RR B
JR NC,L3
LD A,10d
XO0R E
LD E,A
LD A,88H
XOR D
LD D,A
L3 DJNZ L2
L4 LD A,D
XOR (HL)
LD D,A
DEC HL
DEC Cc
JR NZ,L1l
EX DE,HL ;result to HL
LD A, L ;print in
CALL HEX ;reverse order
LD A,H
CALL HEX
CALL CR ;print carriage return
JR NEXT ;get another password
CR LD A,13
Jp 33H
HEX PUSH AF ;print A in hex
RRCA
RRCA
RRCA
RRCA
CALL HEX2
POP AF
HEX2 AND 15
ADD A,30H
Cp 3AH

Jp C,33H

DISK FILES PAGE 154

ADD A,7

Jp 33H
PASSWD DEFS 8

END START

This program does not provide a formula for discovering the
password corresponding to a particular hash code, but lets you
experiment to find a specific value. This is the method used
for TRSDOS 2.1 and 2.2, but it has been modified for 2.3. The
following table shows all the known hash codes and passwords
used by TRSDOS 2.1, 2.2 and 2.3, NEWDOS 2.1, and VTOS 3.0:

Hash Code Password (s) Used by

1FB2 '*BGBI ' Access for BOOT/SYS, all DOSs

219E *AJJJ ' Access for system files,
all DOSs

2A5F 'BGBQ ' Access for VTOS 3.0 FORMAT,
BACKUP, etc.

607F ' EQFY ' Update for BOOT/SYS, all DOSs

782F 'BASIC ! Update for TRSDO[2.2 & 2.3
BASIC, BASICR

8130 'RVCOOK ' TRSDOS 2.1 & NEWDOS FORMAT,
COPY, BASIC; BACKUP

9642 ! ' ALL files with no password

982F ' FORMAT ! Update for TRSDOS 2.2 & 2.3
FORMAT

A261 'F3GUM ! TRSDOS 2.1 system files

‘NV36 !

A71D ' DNRU ! Update for DIR/SY¥S, all DOSs

ACA8 'BACKUP ! Update for TRSDOS 2.2 & 2.3
BACKUP

bD61 'LOY4 ! TRSDOS 2.2 & 2.3 system files

Eg42 * PASSWORD' Disk password, all DOSs

EB29 " XNTR ! Update for system files,
all DOSs

FOES5 ‘DLSD ' Access for DIR/SYS, all DOSs

17.7 Pile Structures and Types

Several different types of files are stored on diskettes:
Basic program files, object program files, system files, and
data files. Special types of files include Editor/Assembler
source files and Electric Pencil data files. File types are
usually indicated by the extension part of the file name
(following the "/"). It is always a good idea for you to use
extensions even though they cause more typing. Standard
extensions are “BAS" for Basic programs, “CMD" for object
programs, “DAT' for data files, “8SYS* for system files, "ASM"
or “SOR" for Editor/Assembler source files, and "PCL" for
Electric Pencil files,

DISK FILES PAGE 155

Files are simply blocks of 256 bytes, stored in successive
sectors of the diskette. The system software ALWAYS writes
256 bytes at a time, meaning that it writes whatever garbage
is left in memory in the last sector following the last byte
that you use. Another important point is that all standard
file types use 256-byte records, although Basic programs are
able to read only 255 bytes because of the limitations on the
size of Basic strings.

(A) ASCII Basic Program Files

Files stored 1in this form appear exactly as they were
entered into memory. LISTing the program under the DOS
produces the same listing as under Basic. Fach line begins
with a line number, followed by a space and the program text,
terminating in a carriage return. Loading files stored in
this form takes longer, because each Lline must undergo a
translation process Jjust as when vyou type it in. One
advantage of ASCII Basic program files is that they «can be
read and edited by the Electric Pencil.

(B) Binary Basic Program Files

Most Baslic programs are stored in this form, which is
actually a dump of the way in which the program is stored in
memory during execution. Line numbers are stored in two
bytes, and each Basic key word is translated into its binary
"token"., Other items, such as variable names and strings, are
not translated. The very first byte of the file is FFH (255).
Following that byte, individual 1lines are encoded as units
according to the following scheme:

bytes 1-2: pointer to NEXT line number in memory
bytes 3-4: line number, in binary (LSB/MSB)
bytes 5-n: program text (n=last byte of text)
byte n+l: gzero.

The end of the program is recognized by zeros in bytes 1-2
of the line code. When combined with zero at the end of the
previous 1line, they produce a series of three successive
zZeros.

(C) Object Program Files

Object program or command files are produced by the
Editor/Assembler program, or transferred to the disk by the
TAPEDISK utility or some other program like MON4. An object
program is executable machine code. All that is necessary is

DISK FILES PAGE 156

for it to be read into the proper locations, and then for
control to be transferred to the starting address. (For this
reason, object programs must not be read into the portion of
RAM occupied by the D0OS, for the DOS will be bombed.)

Object programs are loaded in blocks which have the
following format:

byte 1l: code for function of bytes in block:
@1 = load into address specified
@2 = entry point address
any other value = do not load this block
(it contains comments only)
byte 2: byte count (usually 8¢H or less)
bytes 3-4: address where block loaded or control
transferred to
bytes 5-n: data (unused if byte 1=2)
byte n+l: checksum for block

The transfer address must be the last block in the file.
1f you do not specify an address to the Editor/Assembler
program, this value defaults to zero,

(D) System Files

System files, including SYS@ to SYSn as well as BOOT/SYS
and DIR/SYS, have exactly the same format as object program
files. (DIR/SYS has a different structure discussed in detail
above.) All system files on standard diskettes have an
extensive copyright notice at the beginning.

(E) Editor/Assembler Source Files

Source files to the disk version of the Editor/Assembler
program (available on NEWDOS) use the same format as source
tapes. Each line is stored as a separate short block. The
complete format is as follows:

byte 1 (of file): D3H

bytes 2-7: file name, stored as succession
of six characters padded with blanks.
Do not rename EDTASM files!

bytes 1-5 (of block): line number, ASCII with bit 7
set (8¢H added to ASCII value).

byte 6: blank space (20H)

bytes 7-n: complete line statement, terminating with
carriage return (@DH). Right arrow TAB
key stored as @9H.

last byte of file: 1AH (end-of-file byte)

DISK FILES PAGE 157

(F) Electric Pencil Files

These files are simply a string of ASCII characters with no
special codes. Each record terminates with a carriage return,
and the end of the file is signified by the EOF byte 8.

(G) Data Files

Data files have no set rules for their structure. You make
the rules when you write the data and read it back, or when
you use the FIELD statement in Basic.

Zilog Tables of zZ-8@ Instructions PAGE 158

APPENDIX A: Zilog Tables of Z-80 Instructions

The following section gives a summary of the 2-8¢ instruction
set. The instructions are logically arranged into dgroups as
shown in tables 7.¢-1 through 7.8-11. Each table shows the
assembly-language mnemonic OP code, the actual OP code, the
symbolic operation, the content of the flag register following
the execution of each instruction, the number of bytes
required for each instruction, as well as the number of memory
cycles and the total number of T states (external clock
periods) required for the fetching and execution of each
instruction.

Zilog Tables of Z-8¢ Instructions PAGE 159

Symbolic Flags OP-Code (X;‘l?. (’;‘.9 M (l;l'o 'l‘
Mnemonic Operation C|ZP/VSINIH |76 543 210 | Bytes Cycles | Cycles | Comments
LDy 1 rer oloelolofojo (01l r 1 1 4 nr Reg.
LDrn 1<n olejojlejolo [0 r 110 2 2 7 000 B
+~ n = 001 C
LD r, (HL) r+ (HL) ojolefolo|e j01 r 110 1 2 7 010 D
LD r, (IX+d) r+ (IX+d) elojoelefals (Il 011 101 3 5 19 011 E
01 r 110 100 H
- d - 101 L
LD r, (1Y+d) 1+ (1Y4d) eofoeielo|eje il 111 10] 3 5 19 111 A
01 r 110
- d =
LD (HL), ¢ (HL) +~ ¢ eloe[o|lejole |01 110 1 2 7
LD (IX+d), (IX+d) -1 ojaejlojoelejle j1]1 011 101 3 5 19
01 110 «
- d -
LD (IY+d), r (IY+d) «r elejoejoioleo[i] 111 101 3 5 19
01 110 r
- d -
LD (HL),n (HL) «n oleloelo|le|lo [00 110 110 | 2 3 10
- n -
LD (IX+d), n {IXtd) «~n eje[slolo]e]il 01l 101 4 5 19
00 110 110
- d =
+— n -t
LD (IYHd), n (IY+d) +~n elefojtejofa il 111 101 4 5 19
00 110 110
- d -
- n -
LD A, (BC) | A« (BC) olelofajefe oo 001 010 | 1 2 7
LD A, (DE) A +(DE) ofo|lo|eio|o |00 011 010 1 2 7
LD A, (nn) A« (nn) ejlolojoeflofe OO 111 OI0 3 4 13
- n -
- n -
LD (BC), A (BC)+ A oloje|lefele |00 000 010 1 2 7
LD (DE), A (DE)« A olo|eleiefe |00 010 010 1 2 7
LD (nn), A (nn) « A oja|eo|efeo|e (00 110 010 3 4 13
Ll n -
+— n -
LD A, 1 Al o ${IFF${ 0 0§11 101 101 2 2 9
01 010 111
LD AR A+R o| ${IFF${ 0| 0|11 101 101 2 2 9
01 0Ot1 111
LDLA I—A o|ojeloiofefil 101 101 2 2 9
01 000 111
LDR, A R+~A ool elalole]ll 101 101 2 2 9
01 001 111

Notes: 1, ¥ means any of the registers A, B, C, D, E, H, L
IFF the content of the interrupt enable flip-flop (IFF) is copied into the P/V flag

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

$ = flag is affected according to the result of the operation.

8-BIT LOAD GROUP

Zilog Tables of Z-88¢ Instructions

Flogs OpCode | No. No. No.
Symbolic P of of M of T
Mnemonic QOperation clz N s| nl 1| 76 543 210 Bytes | Cycles | States | Comments
LD dd, nn dd +~nn elo|o]ajo]o]00 dd0 001 3 3 10 dd Pair
- n - L) BC
- n - o1 DE
LD IX, an iX «~nn oloia|e|le]o|il OI1 1O] 4 4 14 10 HL
00 100 001 n Sp
- n -
- 0 -
LD IY,nn 1Y «<nan o|la|o|e| efo|11 111 101 4 4 14
00 106 001
no-
n -
LD HL, (nn) H + (nn+l) o|eleje] ejoind 101 01O 3 5 16
L« (nn) - n -
- p -
LD dd, (an) ddﬂv(nnﬂ) oleje|s]oleojlt 101 10t 4 6 20
ddL~‘(nn) 01 ddi 011
- n -
- n -
LDIX, () | Xy~ (n+])| ofolelolele) 11011 101] 4 6 20
IX; - (on) 00 101 010
- n -
- 0 -
LDIY, (nn) | Iy~ (antl) [elelofof ofelil 111 101} 4 6 20
1Y) ~ () 00 101 010
- n -
- n -
LD {nn), HL {nn+1) «H ejo|le|o] a| o] 00 100 010 3 5 16
(nn) L - n -
- n -
LD (nn),dd (m"ﬁl)«ddH efelelojojelll 101 101 4 6 20
(nn)o—ddL 01 dd0 011
- n -
- n -
LD (an), IX (nn+1)~IXH olojolele]ejit 011 101 4 6 20
(nn)leL 00 100 010
- n -~
- n -
LD {nn), 1Y (nn+l)~—lYR ejelojol el 11 111 101 4 6 20
(m\)o—lYL 00 100 010
- n -
- n -
LD SP, HL SP ~HL olojalefoelalil 111 001 1 1 6
LD SP, IX SP+1X elo|s|o| e]ejli 011 101 2 2 10
11 111 001
LD SP, 1Y SP 1Y sjojoe|eiofelll 111 101 2 2 10
It 111 001 qq Pair
PUSH qq (SP-Z)-—qu olsiejalele]ll qq0 101 i 3 11 00 BC
(SP-1) ~qqy 01 DE
PUSH IX (SP~2)¢'XXL e|lo|eia| e|ojll 011 101 2 4 15 10 HL
(SP«l)leH 11 100 101 11 AF
PUSH 1Y (Sl’-Z)‘--lYL o|le|o]|e| ofef 11 111 101 2 4 15
(SP—I)«iYH il 160 101
POPqq qur(SPﬂ) o|e|e|ejelo]il qg0 001} 1 3 10
qqy ~ SP)
POPIX Xy +(SPH1) | ejejejel oo i1 o011 10| 2 4 14
X~ (5P 11 100 001
POPIY Yy« (SP+1) | e| o) ol o) o] 0 1| o2 4 14
lYl'-(SP) 1t 100 001

Notes: dd is any of the register pairs BC, DE, HL, SP
qq is any of the register pairs AF, BC, DE, HL
(PAIR)y, (PAlR)L refer to high order and low order eight bits of the register pair respectively
Eg.BCy =C,AFy=A

Flzg Notation: o = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
4 flag is affected according to the resuit of the operation.

16-BIT LOAD GROUP

PAGE 160

Flags Op-Code
No. No. No.
Symbolic ‘7 of of M of T
Mnemonic Operation C|Z|V|IS|N|H|[76 543 210 Bytes Cycles | States Comments
EX DE, HL DE - - HL eje|e|oje|e |1l 101 011 1 1 4
EX AF, AF’ AF —~ AP eajlejoioje|e 00 001 GO0 1 1 4
EXX (BMC') o|lejofalafe 1] 011 001 1 1 4 Register bank and
DE p{ DE* auxiliary register
H L bank exchange
EX (SP), HL H« (SP+1) elejo|elole |11 100 011 i 5 19
L« (SP)
EX (SP), IX IXH“(SP'H) ojeo|lo|lejoje |1l O11 101 2 6 23
IX; =~ (SP) 11 100 011
EX (8P), 1Y IYH*-(SP+1) ejlejojajofe |1l 111 101 2 6 23
IYLw(SP) It 100 011
@
LbI1 (DE)«(HL) Jolejt]ef0lo]ll 101 101 2 4 16 Load (HL) into
DE « DE+1] 10 100 000 (DE), increment the
pointers and
HL ~ HL+1 decrement the byte
BC - B counter (BC)
LDIR (DEY(HLy Jofe]Ofe[0f{O0]11 101 101 2 N 21 IfBC# 0
DE « DL+ 10 110 600 2 4 16 IfBC=0
HL ~ HL+1
BC -~ BC-}
Repeat until
BC =0
0
LD (DE)e-(HL) fofe]t[of0]0 Il 101 101 2 4 16
DF — DE-1 10 101 000
HL « HL-1
BC « BC-1
LDDR (DE) — tHL) ofefieft 011 101 101 2 5 21 HBC+0
DE - DE-I 10 111 000 2 4 16 IfBC=0
HIL - HL-{
BC ~BC-1
Repeat until
BC =0
QO
(@3] A - (HL) el byt 1] 8|11 101 101 2 4 16
HL «~ HL+1 10 100 001
BC « BC~1
QO
CPIR A~ (HL) el I t{ it 101 101 2 5 21 If BC # 0 and A # (HL)
HL ~ HL+1 10 110 001 2 4 16 IfBC=00rA =(HL)
BC — BC-1
Repuat untid
A =itk or
BC =0
QO
«PL A - (HL) sttt i 101 101 2 4 16
HL «- HL-1 10 101 001
BC ~ BC-1
610
CPDR A~ (H1) ef t1 4ttty 10l 101 2 5 21 IfBC # 0 and A # (HL)
HL — HL-1 10 111 001 2 4 16 IfBC=0orA = (HL)
BC ~ BC-!
Repeat untit
A= (HL)or
BC =0

Notes: (D P/V flag is O it the result of BC-1 = 0, otherwise PIV = |

@ 7 flagis | i A = (HL), otherwise Z = 0,
'lag Notation: e = flag not affected, 0 = flag reset. | = flag set, X = tlag 1s unknown,
) t = tlag s affected according to the result of the operation.

EXCHANGE GROUP AND BLOCK TRANSFER AND SEARCH GROUP

Zilog Tables of Z-80 Instructions PAGE 162
Flags Op-Code
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation ClZ|V|[S|N|H|76 543 210 | Bytes Cycles | States Comments
ADD A, r AvA+r tlefv]ejo]t j10[000] » 1 1 4 r Reg.
ADD A, n A-A+n sletvitlols |11 (600 110 | 2 2 7 88‘1) g
-ono 010 D
ADDA,(H) | Av a+@ry |t |tjvis|o]s|to[6ad 110 | 1 2 7 o1l E
ADD A, (IX+d) A—A+(X+d) [¢]tV]tfolt |11 011 101 | 3 5 19 :g? *L*
10 [000] 110 11 A
- d P
ADD A, (IY+d) A«~A+(IY+d) |t |3 Vislofs pir 11y 101 | 3 5 19
10 [0G0) 110
- d -
ADC A,s A-A+s+CY|t [t]|VIt]0]2 001 sis any ol r, n,
SUB's AvA-s IAERAALERRE (HL), (1X+d),
SBC A) (1Y +d) as shown tor
.8 A+~A-s=-CY[t]t]VI t]1]s orm ADD instruction
AND s A-A A s {OftlPlt]Of1L
OR s A~A Y s joltfpit|olo The indicated bits
- replace the 000 in
XOR 5 A-Aes O 4P iey0)0 10] the ADD set above
CPs A-s tle vt |
INC 1 rertl oft|vit|o]ltloo « [H0QJY 1 1 4
INC (HL) (HL) — (HL)*1{e |t V|t l0 |t Joo 11o[T00} | 1 3 1
INC (1X+d) (IX+d) « elt|VIt{oft 1t ot 101 | 3 6 23
{IX+d)y+1 00 HO
- d -
INC (1Y+d) (1Y+d) — sltlvit{o]s 1 it 1or | 3 6 23
(1Y+d) + 1 00 HO
- d o
DEC m mem-1 et VIt m is any of r, (HL),
(IX+d), (1Y +d) as

shown for INC
Sume tormat and
states as INC
Replave OO with
104 1 OP code

Notes: The V symbol in the P/V flug column indicates that the PYV flag contains the overflow of the result of the
operation Similarly the P symbol indicates parity. V = | means overflow. V = 0 means not overflow P =
means parity of the result is even, P = 0 means parity of the result is odd

Flag Notation:

o = flag not affected, 0 = flag reset, | = flag set, X = flag is unknown.
t = flag is affected according to the result of the operation

8-BIT ARITHMETIC AND LOGICAL GROUP

Zilog Tables of Z-8% Instructions PAGE 163
Flags Op-Code
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation V| S 76 543 210 Bytes Cycles | States Comments
DAA Converts acc. Plt 60 100 111 1 1 4 Decimal adjust
content into accumulator
packed BCD
following add
or subtract
with packed
BCD operands
CPL A~A oo 00 101 111 1 i 4 Complement
accumulator
(one’s complement)
NEG A—0-A Vit 11 101 101 2 2 8 Negate acc, (two's
01 000 100 complement)
CCF cY ~CY ofe 00 111 111 | 1 1 4 Complement carry
flag
SCF CY +~1 oo 00 110 111 1 1 4 Set carry flag
NOP No operation oo 00 000 000 1 1 4
HALT CPU halted oo 01 110 110 i 1 4
DI IFF « 0 efo 11 110 011 1 1 4
El IFF « 1 el e 11 111 01t 1 1 4
MO Set interrupt ofe 11 101 10i 2 2 8
mode 0 01 000 110
M1 Set interrupt o} 11 101 101 2 2 8
mode 1 01 010 110
M2 Set interrupt ole 11 101 101 2 2 8
mode 2 01 011 110
Notes: IFF indicates the interrupt enable flip-flop

CY indicates the carry flip-flop.

Flag Notation:

e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

$ = flag is affected according to the result of the operation.

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Zilog Tables of Z-80 Instructions PAGE 164

No. No. No.
Symbolic Flags OpLode of of M of T
M perati C|Z P/V S[NJH|76 543 210 | Bytes | Cycles | States | Comments
ADDHL, ss HL « HL+ss tlejelo 0 |X]00 ssl 001 1 3 11 1] Reg.
00 BC
ADCHL,ss |HL-HL+ss+CY[t]2{V]s]o [X[11 101 101 | 2 4 15 o1 DE
10 HL
01 ssl 010 n Sp
SBC HL, ss HL+~HL-ss-<CY | $] Vs |1 |X]11 101 101 | 2 4 15
01 ss0 010
ADDIX, pp IX~IX+pp tlejolel0 iX]|11 011 101 2 4 15 pp Reg.
00 ppl 001 00 BC
01 DE
10 X
1t sSp
ADDIY,1r IYeIY+rr $lelelolO iX]|1l 111 101 2 4 15 :3 Reg.
00 rrl 001 00 BC
[1]] DE
10 1Y
1 Sp
INC ss 8 « 85 + 1 ejo]ojolo e |00 ssO 011 1 1 6
INC IX IXIX+1 ejielo|e|o joilil 01l 10} 2 2 10
00 100 011
INC 1Y IY 1Y+ | eojojoflo]o|eil]l 1] 10] 2 2 10
00 100 011
DEC ss s —ss-1 ejejejo|o 0|00 ssl O11 1 1 6
DEC IX IX-IX-1 eloejojolojo|ll 011 101 2 2 10
00 101 011
DECIY IY 1Y - 1 ojojelefo o1l I11 101 2 2 10
00 101 O

Notes: ss is any of the register pairs BC, DE, HL, SP
pp is any of the register pairs BC, DE, 1X, SP
1 is any of the register pairs BC, DE, 1Y, SP.

Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
t = flag is affected according to the result of the operation.

16-BIT ARITHMETIC GROUP

Zilog Tables of Z-8¢ Instructions PAGE 165
Flags 0Op-Code
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation C ViSs 76 543 210 Bytes Cycles | States Comments
RLCA m H ofe 00 000 111 1 1 4 Rotate left circular
accumuiator
RLA - .1._0. t ole 00 010 111 1 1 4 Rotate left
* accumulator
RRCA .7 — ol t oo 00 001 111} 1 1 4 Rotate right circular
x accumulator
RRA . 7 et o.. H olo 00 011 111 1 1 4 Rotate right
A accumulator
RICr b Pl 11 001 01% 2 2 8 Rotate left circular
00 T register r
RLC (HL) 3 Pl 11 001 011 2 4 15 r Reg.
00[600]110 000 B
RLC (IX+d) L=l []2 2] 11 011 101| 4 6 23 001 ¢
T HLE (X +d) (1Y +0) 11 001 0}1 gi(’) ED
- d - 100 H
o] 1o T
RLC (1Y+d) b4 Pit 11 111 104 4 6 23
11 001 011
- 4 -
oo[oo0]110
RLm .-I $ Pis (61a) Instruction format and
mEe (HL) (IXd) (1Y +d) states are as shown
for RLC,m. To form
” new OP-code replace
RRC m tleiels 001 [000]of RLC,m with
m= e (HLY UK+ (1Y48) shown code
RR m =] |+]|s]r]s
m T (HL) UXed) (1Y+d)
SLAm o Jt]e|ple
m e (HLY (1X+d) {IY+d)
7 et 0]
SRAm t t Pt
m = e (HL) (IX+4d) (1Y+d)
SRLm o % Pt 111
m =1 (HL) ({{X+d) (IV+d)
RLD Y EN ENE wu 1o Pl 11 101 101] 2 5 18 Rotate digit left and
L] o1 101 111 right between the
accumulator
[3 and location (HL).
RRD A("H ° Pl 11 101 101| 2 5 18 The content of the
01 100 111 upper half of the
accumulator is
unaffected
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,

$ = flag is affected according to the result of the operation.

ROTATE AND SHIFT GROUP

Zilog Tables of Z-80 Instructions PAGE 166
Flags Op-Code
P P No. No. No.
Symbolic ! of of M of T
Mnemonic Operation vis H|76 543 210 Bytes Cycles | States | Comments
BITb, 1 ZO-Tb X 1111 001 011 2 2 8 T Reg.
01 b r 000 B
BITb, (HL) | Z~(HL) x| x|o|1]11 001 011] 2 3 12 g?(l) g
01 b 110 0il E
BIT b, (IX+d) Z*—(IX-’-d)b X| X 1111 011 101 4 5 20 100 H
11 001 011 101 L
111 A
- d -
01 b 110 b Bit Tested
BIT b, (IY+d) Zo—(lY~!~d)b X| X 11 111 101 4 5 20 000 0
1ol 010 2
-4 - o1 | 3
01 b 110 100 4
101 5
110 6
1it 7
SETb, r rb<—l ofe e |11 001 Ol 2 2 8
o -
SET b, (HL) (HL)bhl ole o1l 001 011 2 4 15
1] v 110
SET b, (IX+d) (IX'Pd)b*-l ofe o111 011 101 4 6 23
11 001 O1t
- d -
[o 110
SET b, (IY+d) (lYﬂi)b‘*l oje elll 111 101 4 6 23
11 001 011
- d -
[ii] b 110
RES b, m s+ 0 To form new OP-
m=r, (HL) code replace [T1]
(I)'(+d) ’ of SET b,m with
(lY*d)' . Flags and time
states for SET
instruction

Notes: The notation 3y indicates bit b (0 to 7) or location s,

Flag Notation:

e = flag not affected, 0 = flag reset, | = flag set. X = flag is unknown,

{4 = flag is affected according to the result of the operation.

BIT SET, RESET AND TEST GROUP

Zilog Tables of Z-8¢ Instructions PAGE 167
Flags 0Op-Code
B No. No. No.
Symbolic ! of of M of T
Mnemonic Operation ClZ| VISIN|[H|76 543 210| Bytes Cycles | States | Comments
P nn PC «nn ele|oe|o|lelejll 000 O11 3 3 10
- n -
- n - Condition
JP ce, nn If conditioncc] o] e |a [e]loJo |1l cc 010 3 3 10 NZnon zero
is true PC «nn, - n - Z zero
otherwise e n - NCnon carry
continue C, carry
PO parity odd
PE parity even
P sign positive
JRe PC—PC+e elele jolo{o]00 011 000 2 3 12 M sign negative
- ewl —
JRC,e IfC=0, oje|ojo]e|e|00 111 000 2 2 7 1t condition not met
continue
- g=2 -~
IfC=1, 2 3 12 If condition is met
PC + PC+e
JRNC, e IfC=1, afefafofo|o]00 116 000 2 2 7 If condition not met
continue
- gl —
If C=0, 2 3 i2 1t condition is met
PC~PC+e
JRZ,e fz=0 ejojeleio]e]00 101 000 2 2 7 It condition not met
continue
- g-l
Ifz=1, 2 3 12 it condition is met
PC+~PC+t+e
JRNZ, e Hz=1, eolelejo]la]|e|00 100 000 2 2 7 1 condition not mt
continue - eu2 -
Ifz=0, 2 3 12 If condition met
PC~PC+e
1P (HL) PC «~ HL elofo|efofoel il 101 001 1 H 4
IP (IX) PC+1IX ofe|leje]e|e] i 011 101 2 2 8
11 101 001
IP (1Y) PC ~1Y olefjofojeiof Il 111 101 2 2 8
11 101 001
DINZ,e B+ B-1 olejolejo]o|00 010 000] 2 2 8 1IfB=0
IfB=0, -
. - =2
continue
IfB=+#0, 2 3 13 IFB=0
PC+~PC+e

Notes: e represents the extension in the relative addressing mode
e is a signed two’s complement number in the range <-126, 129>
e-2 in the op-code provides an effective address of pc +e as PCis
incremented by 2 prior to the addition of e.
Flag Notation: e = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
3 = flag is affected according to the result of the operation

JUMP GROUP

Zilog Tables of Z-8@ Instructions PAGE 168

Flags Op-Code
—ﬁ, No. No. No.
Symbolic ! of of M of T
M i Operati ClZ|V|S|NjH|76 543 210]| Bytes Cycles | States | Comments
CALL nn (Sl’-l)v—l’CH o|e|o]o]elo il 001 101 3 5 17
(SP-Z)'—PCL - n -
PCenn - 8 -
CALL cc, nn If condition olojolo]oje|ll cc 100 3 3 10 If ccis false
cc is false -
continue, h
otherwise - - 3 5 17 If ccis true
same as
CALL nn
RET PCL*‘(SP) ojejejelele |11l 001 001 1 3 10
PCpy~(SP+1)
RET cc If condition ololololofo |1l cc 000 1 1 5 If cc is false
cc is false
"
‘c):?em; 1 3 11 If cc is true
same as ce | Condition
RET 000 | NZ non zero
001 z zero
010| NC non carry
RETI Return from olojolelele |1l 101 101 2 4 14 o11} ¢ carry
interrupt 01 001 101 180 PO parity odd
101 | PE parity even
RETN sgrtlurrngsfg?le ololejejole |1l 101 101} 2 4 14 110] p sign positive
interrupt 01 000 101 i M sign negative
RST p (SP-1)+PCy | ojejoejejoje 1ot 11 1 3 11
(SP-2)+PCy
PCH«O
PCL'—P

Flag Notation: o = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown
4 = flag is affected according to the resuit of the operation.

CALL AND RETURN GROUP

Zilog Tables of Z-88 Instructions PAGE 169
Flags Op-Code
P No. No. No.
Symbolic / of of M of T
Mnemonic Operation CizZ|Vvis 76 543 210 Bytes Cycles | States Comments
IN A, (n) A+~ (n) olojoje 11 011 011 2 3 11 nto Ay~ Ay
- n - Accto A ~A15
INT1, (C) 1+ (C) o| $|P|3 11 101 101 2 3 12 Cto AO~A7
ifr =110 only 01 r 000 BtoA8'~A15
the flags will
be affected
INI (HL) « (O X[t X]{X 11 101 101 2 4 16 Cto Ao“ A7
B~B-1 10 100 010 BtoA8~A15
HL «HL +1
INIR (HL) « (C) Xil|X|{X i1 101 101 2 5 21 CloA, ~ A
UfB #0) o7
B+~B-1 10 110 010 BtoA8~A]5
HL ~HIL +1 2 4 16
Repeat until (IfB=0)
B=0
0
IND (HL) - (©) Xl X] X 11 101 101 2 4 16 Cto A ~A7
B+~B-1 10 101 €10 BtoA8~AlS
HL «HL -1
INDR (HL) ~(Q) XI1EX] X 11 101 101 2 5 21 CtoA, ~ A
7
B+B-1 10 111 010 (arB #0) BtoAg~ A
EL"HL‘z 2 4 16
epeat unti =
320 (are=0)
OUT (n), Al (n)«~A ejojofo i1 010 011 2 3 11 nto AO ~ A
- n — Acc(oAg*Al5
ouT (C), (C) =1 oiejole 11 o1 101 2 3 12 Cto A, ~ A7
o 01 ¢ 001 BloAg~ A
OUTI (C) ~ (HL) XXX i1 101 101 2 4 16 Cto Ay~ Ay
B+~B-1 10 100 011 B(()A8‘~A‘S
HL ~HL +1
OTIR (C) + (HL) X1 X]Xx 11 101 101 2 5 21 CloA, ~ A
B+B-1 10 110 011 ars+0 BloAg~ A,
:"“H" +'11 2 4 16
epeat unti .
Bro (ItB=0)
ouTD (C) «~ (HL) XXX 1101 101 2 4 16 Cro A0 ~ A7
B+~B-1 10 101 011 BIUABWAIS
HL ~HL -1
OTDR (C) ~ (HL) X[p1{Xix i1 101 101 2 5 21 CtoA, ~ A
afB #0) 7
B~B-1 10 111 01t BtoA8~A15
EL“HL'IH 2 4 16
epeat unt. =
B=0 (If B=0)

Notes: (1) If the result of B- 1 is zero the Z flag is set, otherwise it is reset

Flag Notation:

o = flag not affected, 0 = flag reset, 1 = flag set, X = flag is unknown,
$ = flag is affected according to the result of the operation.

INPUT AND OUTPUT GROUP

ASCIi/Hexadecimal Conversion Table PAGE 170

APPENDIX B: ASCII/Hexadecimal Conversion Table

MSD @ 1 2 3 4 5 6 7
LSD 300 201 gLo g1l1 100 101 110 111
g Q000 NUL DLE SPACE [} @ P @ P
1 @00l SOH DC1 ! 1 A Q a q
2 0010 STX DC2 " 2 B R b r
3 0611 ETX DC3 ¥ 3 C S c s
4 (106 EQT DC4 $ 4 D T d t
5 @161 ENQ NAK % 5 E U e u
6 @gll0 ACK SYN & 6 F \Y £ v
7 @111 BEL ETB ' 7 G W g W
8 1000 BS CAN (8 H X h X
9 1601 qT EM) 9 I Y i %
A 1010 LF SUB * H J Z | Z
B 1911 vT gSsC + : K up ar k up ar
C 1109 FF FS v < L dn ar 1 dn ar
D 1101 CR GS - = M 1f ar m 1f ar
E 1110 S0 RS o > N rt ar n rt ar
Fo1111 SI Us / ? 0 cursor o DEL

This table shows the correspondence between ASCII characters
and their hexadecimal values. To read the <chart, take the
most~significant digit from the top row and the least-
significant digit from the left column.

The following abbreviations have been used to indicate special
functions:

NUL NULL DLE Data Link Escape
SOH * Start of Heading DC1 Device Control 1
STX Start of Text DC2 Device Control 2
ETX End of Text DC3 Device Control 3
EOT End of Transmission DC4 Device Control 4
ENQ Enquiry NAK Negative Acknowledge
ACK Acknowledge SYN Synchronous Idle
BEL Bell ETB * End of Transmission
DEL Delete Block

BS Backspace CAN Cancel

H Horizontal Tabulation BEM End of Medium

LF Line Feed Ss Special Sequence

VT vertical Tabulation ESC Escape

BE Form Feed FS *# File Separator

CR Carriage Return GS *¥ Group Separator

s0 * Shift Out RS * Record Separator

sI * ghift In us * Unit Separator

ASCII/Hexadecimal Conversion Table PAGE 171

The special functions marked with an asterisk have been given
special meanings on the TRS-8¢, and hence the normal ASCII

function is not available. These special meanings are as
follows:

Char vValue Meaning

SOoH g1 BREAK key

50 gF Cursor On

SI gF Cursor Off

ETB 17 32-character mode

FS 1C Home Cursor

GSs 1D Cursor to beginning of line
RS 1E Erase to end of line

us 1F Clear to end of screen

In addition to these changes, it is also necessary to note
that Radio Shack did not use standard ASCII values for the
down arrow, left arrow, right arrow, cursor, and “"shift-@“
keys.

Numeric List of Z-8p Instructions PAGE 172
APPENDIX C: Numeric List of Z-80 Instructions
SOURCE SOURCE
OBJECT CODE STATEMENT OBJECT CODE STATEMENT
29 NOP 328405 LD (NN) ,A
8184085 LD BC,NN 33 INC Sp
g2 LD (8C) ,A 34 INC (HL)
@3 INC BC 35 DEC (HL)
B4 INC B 3629 LD (HL) ,N
25 DEC B 37 SCF
3620 L.D B,N 382E JR c,DIS
a7 RLCA 39 ADD HL,SP
@38 EX AF ,AF' 3A84095 LD A, (NN)
29 ADD HL,BC 3B DEC SP
BA LD A, (BC) 3C INC A
2B DEC BC 3D DEC A
ac INC Cc 3E20 LD A,N
2D DEC C 3F CCF
GE20 LD C,N 49 LD B,B
gF RRCA 41 LD B,C
162E DJNZ DIS 42 LD B,D
118485 LD DE,NN 43 LD B,E
12 LD (DE) ,A 44 LD B,H
13 INC DE 45 LD B, L
14 INC D 46 LD B, (HL)
15 DEC D 47 LD B,A
1620 LD D,N 48 LD C,B
17 RLA 49 LD c,C
182E JR DIS 4A LD c,D
19 ADD HL,DE 4B LD C,E
1A LD A, (DE) ac LD C,H
18 DEC DE an LD c,L
1¢ INC E 4E LD C, (HL)
1D DEC B 4F LD C,A
1E20 LD EsN 50 LD D,B
1F RRA 51 LD D,C
202E JR NZ,DIS 52 LD D,D
218405 LD HL,NN 53 LD D,E
228405 LD (NN) ,HL 54 LD D,H
23 INC HL 55 LD D,L
24 INC H 56 LD D, (HL)
25 DEC H 57 LD D,A
2620 LD H,N 58 LD E,B
27 DAA 59 LD E,C
282E JR Z,DIS 5A LD E,D
29 ADD HL,HL 5B LD E;E
2278405 LD HL, (NN) 5C LD E,H
2B DEC HL 5D LD E,L
2C INC L 5E LD E, (HL)
2D DEC L 5F LD E,A
2E20 LD L,N 60 L.D H,B
2F CPL 6l LD H,C
382E JR NC,DIS 62 LD H,D
318405 LD SP,NN 63 LD H,BE

Numeric List of Z-8# Instructions PAGE 173

SOURCE SOURCE
OBJECT CODE STATEMENT OBJECT CODE STATEMENT
64 LD H,H 96 SUB (HD)
65 LD q,L 97 suB A
66 LD H, (HL) 98 SBC A,B
67 LD H,A 99 SBC A,C
68 LD L,B 9a SBC A,D
69 LD L,C 9B SBC a,E
6A LD L,D 9C SBC A,H
68 LD L,E 9D SBC A,L
6C LD L,H 9E SBC A, (HL)
6D LD L,L 9F SBC A,A
6E LD L, (HL) AD AND B
6F LD L,A Al AND C
70 LD (HL) ,B A2 AND D
71 LD (L) ,C A3 AND E
72 LD (HL) ,D Ad AND H
73 LD (HL) ,E A5 AND L
74 LD (dL) ,H A6 AND (HL)
75 LD (HL) ,L A7 AND A
76 HALT A8 XOR B
77 LD (HL) ,A A9 XOR C
78 LD A,B AA XOR D
79 LD A,C AB XOR E
7A LD A,D AC XOR H
78 LD A,E AD XOR L
7C LD A,H AE XOR (HL)
7D LD A,L AF XOR A
7E LD A, (HL) B@ OR B
7F LD A,A Bl OR C
8¢ ADD A,B B2 OR D
81 ADD a,C B3 OR E
82 ADD aA,D B4 OR H
83 ADD ALE B5 OR L
84 ADD A,H B6 OR (HL)
85 ADD A,L B7 OR A
86 ADD A, (HL) B8 CP B
87 ADD A,A B9 cp c
88 ADC A,B BA cp D
89 ADC A,C BB cp E
8A ADC A,D BC CP H
8B ADC A,E BD cp L
8C ADC A,H BE CcP (BL)
8D ADC A,L BF CP A
8E ADC A, (HL) Cco RET NZ
8F ADC A,A c1 POP BC
9¢ SuUB B 28405 JP NZ , NN
91 SUB C 38405 Jp NN
92 SUB D C48405 CALL NZ,NN
93 SuUB E C5 PUSH BC
94 suB H C620 ADD A,N
95 SUB L c7 RST 2

Numeric List of Z-88 Instructions PAGE 174

SOURCE SOURCE

OBJECT CODE STATEMENT OBJECT CODE STATEMENT
C8 RET Z FA8405 JP M, NN
Cc9 RET FB EI

CA8405 JP Z NN FC8405 CALL M,NN
¢Bnn see below FDnnnnnn see below
CcC8495 CALL Z,NN FE20 CP N
CD84¢5 CALL NN FF RST 38H
CE20 ADC A,N CBOg RLC B
CF RST 8 CBg1l RLC C
D@ RET NC cB@g2 RLC D
D1 POP DE CB@3 RLC E
D28495 Jp NC,NN CBg4 RLC H
D320 ouT (N) ,A CB@5 RLC L
D484@5 CALL NC,NN CB@6 RLC (HL)
D5 PUSH DE CB@7 RLC A
D620 suB N CBg8 RRC B
D7 RST 1¢H CB@9 RRC C
D8 RET C CBOA RRC D
D9 EXX CB@B RRC B
DA84@5 Jp C,NN CB@cC RRC H
DB2@ IN A, (N) CB@D RRC L
DC8405 CALL C,NN CBOE RRC (HL)
DDnnnnnn see below CB@F RRC A
DE20 SBC A,N CB1l@ RL B
DF RST 18H CB11 RL C
E@ RET PO CB12 RL D
El POP HL CB13 RL E
E28405 Jp PO, NN CBl4 RL H
E3 EX (SP) ,HL CB15 RL L
E48405 CALL PO,NN CB1l6 RL (HL)
ES5 PUSH HL CB17 RL A
E620 AND N CcB1l8 RR B
E7 R8T 20H CB19 RR C
E8 RET PE CBlA RR D
E9 Jp (HL) CB1B RR E
EAB8405 JP PE , NN CB1C RR H
EB EX DE,;HL CB1D RR L
EC8485 CALL PE,NN CB1lE RR (HL)
EDnnnnnn see below CB1F RR A
EE20 X0OR N CB2@ SLA B
EF RST 28H CB21 SLA C
Fo RET P CB22 SLA D
Fl POP AP CB23 SLA E
F28405 JP P, NN CB24 SLA H
F3 DI cB25 SLA L
F48405 CALL P,NN CB26 SLA (HL)
F5 PUSH AF cB27 SLA A
F620 - OR N CB28 SRA B
F7 RST 30H CB29 SRA C
F8 RET M CB2A SRA D
F9 LD SP,HL CB2B SRA B

Numeric List of Z-8¢ Instructions PAGE 175

SOURCE SOURCE
OBJECT CODE STATEMENT OBJECT CODE STATEMENT
cB2C SRA H CB66 BIT 4, (HL)
CB2D SRA L CB67 BIT 4,A
CB2E SRA (HL) CB68 BIT 5,B
CB2F SRA A CB69 BIT 5,C
CB38 SRL B CB6A BIT 5,D
CB39 SRL C CB6B BIT 5,E
CB3A SRL D CB6C BIT 5,H
CB3B SRL E CB6D BIT 5,L
CB3C SRL H CB6E BIT 5, (HL)
CB3D SRL L CB6F BIT 5,4
CB3E SRL (HL) CB78 BIT 6,8
CB3F SRL A CB71 BIT 6,C
CB4g BIT g,8 CB72 BIT 6,D
CcB41 BIT g,C CB73 BIT 6,E
CcBd2 BIT @,D CB74 BIT 6,H
CB43 BIT @g,B CB75 BIT 6,L
CB44 BIT 9,4 CB76 BIT 6, (HL)
CB45 BIT @,L CB77 8IT 6,A
CB4e BIT @, (HL) CB78 BIT 7,8
cB47 BIT g,A CB79 BIT 7,C
CcB48 BIT 1,8 CB7A BIT 7.D
CB49 BI'f 1,C CB7B BIT 7,E
CB4A BIT 1,D cB7C BIT 7,H
CcB4B BIT 1,6 CB7D BIT 7,L
cB4cC BIT 1,4 CB7E BIT 7, (HL)
CB4D BIT 1,L CB7F BIT 7,A
CB4E BIT 1, (dL) CB8g RES 2,8
CB4F BIT 1,A CB81 RES a,C
CB59 BIT 2,B CB82 RES @g,D
CB51 BIT 2,C CB83 RES 8,8
CB52 BIT 2,D CB84 RES g,H
CB53 BIT 2,k CB8S RES @,L
CB54 BIT 2,H CB86 RES @, (HL)
CB55 BIT 2,L CB87 RES @,A
CB56 BIT 2, (HL) CB88 RES 1,B
CB57 BIT 2,A CB89 RES 1,C
CB58 BIT 3,B CB8A RES 1,D
CB59 BIT 3,C CB8B RES 1,E
CB5A BIT 3,D CB8C RES 1,H
CB5B BIT 3,E CB8D RES 1,L
CB5C BIT 3,H CB8E RES 1, (HL)
CB5D BIT 3,L CB8F RES 1,A
CB5E BIT 3, (HL) CB9g RES 2,B
CB5F BIT 3,A CB91l RES 2,C
CB6Y BIT 4,8 CB92 RES 2,D
CcB61l BIT 4,C CB93 RES 2,E
CB62 BIT 4,D CB94 RES 2,H
CB63 BIT 4,E CB95 RES 2,L
CB64 BIT 4,d CB96 RES 2, (HL)
CB65 BIT 4,L CB97 RES 2,A

Numeric List of Z-89 Instructions PAGE 176

SOURCE SOURCE
OBJECT CODE STATEMENT OBJECT CODE STATEMENT
CB98 RES 3,B CBCA SET 1,D
CB99 RES 3,C CBCB SET 1,E
cB9A RES 3,D CBCC SET 1,8
cB9B RES 3,E CBCD SET 1,L
cB9C RES 3,4 CBCE SET 1, (HL)
CB9D RES 3,L CBCF SET 1,A
CBOE RES 3, (HL) CBDg SET 2,B
CB9F RES 3,A CBD1 SET 2,C
CBAg RES 4,B CBD2 SET 2,D
CBAl RES 4,C CBD3 SET 2,E
CBA2 RES 4,D CBD4 SET 2,H
CBA3 RES 4,E CBD5 SET 2,L
CBA4 RES 4,H CBD6 SET 2, (HL)
CBAS5 RES 4,L CBD7 SET 2,A
CBAG RES 4, (HL) CBD8 SET 3,B
CBA7 RES 4,A CBD9 SET 3.,C
CBAS8 RES 5,B CBDA SET 3,D
CBA9 RES 5,C CBDB SET 3,E
CBAA RES 5,D CBDC SET 3,H
CBAB RES 5,E CBDD SET 3,L
CBAC RES 5,H CBDE SET 3, (HL)
CBAD RES 5,L CBDF SET 3,A
CBAE RES 5, (HL) CBE® SET 4,B
CBAF RES 5,A CBEl SET 4,C
CBB@ RES 6,B CBE2 SET 4,D
CBB1 RES 6,C CBE3 SET 4,E
CBB2 RES 6,D CBE4 SET 4,H
CBB3 RES 6,E CBES SET 4,L
CBB4 RES 6,H CBE®6 SET 4, (HL)
CBB5 RES 6,L CBE7 SET 4,A
CBB6 RES 6, (HL) CBES SET 5,B
CBB7 RES 6,A CBE9 SET 5,C
CBB8 RES 7.,B CBEA SET 5,D
cBB9 RES 7,C CBEB SET 5,E
CBBA RES 7,D CBEC SET 5,H
CBBB RES 7.E CBED SET 5,4
(oF-7-18) RES 7.H CBEE SET 5, (HL)
CBBD RES 7,L CBEF SET 5,A
CBBE RES 7, (HL) CBF@ SET 6,B
CBBF RES 7+A CBF1 SET 6,C
cBCo SET 3,B CBF2 SET 6,D
CcBCl1 SET g,C CBF3 SET 6,E
cBC2 SET 4,D CBF4 SET 6,H
CBC3 SET G,E CBF5 SET 6,L
CBC4 SET @,H CBF6 SET 6, (HL)
CBCS5 SET 3,50 CBF7 SET 6,A
CBC6 SET @, (HL) CBF8 SET 7,8
CBC7 SET 2,A CBF9 SET 7,C
CBC8 SET 1,B CBFA SET 7,D
CBC9 SET i,C CBFB SET 7,E

Numeric List of Z-88¢ Instructions PAGE 177

SOURCE SOURCE
OBJECT CODE STATEMENT 0BJECT CODE STATEMENT
CBFC SET 7,H DDCB@546 BIT 0, (IX+IND)
CBEFD SET 7,L DDCB@B54E BIT 1, (IX+IND)
CBFE SET 7, (HL) DDCB@556 BIT 2, (IX+IND)
CBFF SET 7+A DDCB@S55E BIT 3, (IX+IND)
DDg9 ADD IX,BC DDCB@566 BIT 4, (IX+IND)
DD19 ADD IX,DE DDCB@56E BIT 5, (IX+IND)
DD2184@5 LD IX,NN DDCB@576 BIT 6, (IX+IND)
DD2284@5 LD (NN) ,IX DDCB@S57E BIT 7, (IX+IND)
DD23 INC IX DDCB@586 RES @, (IX+IND)
DD29 ADD IX,IX DDCB@58E RES 1, (IX+IND)
DD2A84@5 LD IX, (NN) DDCB@596 RES 2, (IX+IND)
Db2B DEC IX DDCB@59E RES 3, (IX+IND)
DD34g5 INC (IX+IND) DDCB@5A6 RES 4, (IX+IND)
DD3585 DEC (IX+IND) DDCB@5AE RES 5, (IX+IND)
DD368529 LD (IX+IND) ,N DDCB@5B6 RES 6, (IX+IND)
DD39 ADD IX,sp DDCB@5B8E RES 7, (IX+IND)
DD4695 LD B, (IX+1IND) DDCB@5C6 SET @, (IX+IND)
DD4Eg@S5 LD C, (IX+IND) DDCB@S5CE SET 1, (IX+IND)
DD56@5 LD D, (IX+IND) DDCB@5D6 SET 2, (IX+IND)
DD5E@S5 LD E, (IX+IND) DDCB@S5DE SET 3, (IX+IND)
DD6685 LD H, (IX+IND) DDCB@S5E6 SET 4, (IX+IND)
DD6E@S LD L, (IX+IND) DDCB@S5EE SET 5, (IX+IND)
DL70Y5 LD (IX+IND),B DDCB@5F6 SET 6, (IX+IND)
bD71¢5 LD (IX+IND) ,C DDCB@SFE SET 7, (IX+IND)
DD7285 LD (IX+IND),D ED4g IN B, (C)
pDD7385 LD (IX+IND) ,E ED41 ouT (¢),B
DD7405 LD (IX-+IND) ,H ED42 SBC HL,BC
DD7585 LD (IX+IND),L ED438485 LD (NN) ,BC
DD77¢5 LD (IX+IND) ,A ED44 NEG
DD7E@S LD A, (IX+IND) ED45 RETN
DD86@5 ADD A, (IX+IND) ED46 M 8
DD8E@S5 ADC A, (IX+IND) ED47 LD I,A
DD9645 SUB (IX+IND) ED48 IN C, (C)
DD9E@S5 SBC A, (IX+IND) ED49 ourt (c).,cC
DDAGO5 AND (IX+IND) ED4A ADC HL,BC
DDAE@S5 XOR (IX+IND) ED4B84¢5 LD BC, (NN)
DDB685 OR (IX+IND) ED4D RETI
DDBE@5 Cp (IX+IND) ED4F LD R,A
DDE1 POP IX ED59 IN D, (C)
DDE3 EX (sp) ,1X ED51 ouT (C),D
DDE5S pUSH IX ED52 SBC HL,DE
DDE9 Jp (IX) ED538405 LD (NN) ,DE
DDF9 LD SP,IX ED56 M 1
DDCB@5@6 RLC (IX+IND) ED57 LD A, I
DDCB@50E RRC (IX+IND) ED58 IN E, (C)
DDCB@516 RL (IX+IND) ED59 ouT (C) ,E
DDCB@S51E RR (IX+IND) ED5A ADC HL,DE
DDCB@526 SLA (IX+IND) ED5B8465 LD DE, (NN)
DDCB@52E SRA (IX+IND) EDSE M 2

DDCBP53E SRL (IX+IND) EDSF LD A,R

Numeric List of Z-88 Instructions PAGE 178

SOURCE SOURCE

OBJECT CODE STATEMENT OBJECT CODE STATEMENT

ED6D IN ", (C) FD7305 LD {IY+IND) ,E
ED61 ouT (C) ,H FD7405 LD (IY+IND) ,H
ED62 SBC HL,HL FD7505 LD (IY+IND) ,L
ED67 RRD FD7765 LD (IY+IND) ,A
ED68 IN L, (C) FD7EB5 LD A, (IY+IND)
ED69 our (C),L FD8665 ADD A, {IY+IND)
ED6A ADC HL,HL FDSEB5 ADC A, (IY+IND)
ED6F RLD FD9685 SUB (IY+IND)
ED72 SBC HL,SP FD9EBS5 SBC A, (IY+IND)
ED738405 LD (NN) ,SP FDAG6G5 AND (IY+IND)
ED78 IN A, (C) FDAE®S XOR (IY+IND)
ED79 ouT (C) ,A FDB6G5 OR (IY+IND)
ED7A ADC HL,SP FDBEGS cp (IY+IND)
ED7B8485 LD 8P, (NN) FDEL pop IY

EDAD LDI FDE3 EX (SP) ,IY
EDAl CPI FDES5 PUSH IY

EDA2 INI FDE9 Jp (1Y)

EDA3 OUTI FDF9 LD SP,IY
EDAS LDD FDCB@506 RLC (IY+IND)
EDA9 CPD FDCBOSOE RRC (IY+IND)
EDAA IND FDCB@516 RL (IY+IND)
EDAB OUTD FDCB@51E RR (IY+IND)
EDB@ LDIR FDCBB526 SLA (IY+IND)
EDB1 CPIR FDCB@52E SRA (IY+IND)
EDB2 INIR FDCB@53E SRL (IY+IND)
EDB3 OTIR FDCBB546 BIT @, (IY+IND)
EDBS LDDR FDCB@54E BIT 1, (IY+IND)
EDB9 CPDR FDCBB556 BIT 2, (IY+IND)
EDBA INDR FDCB@55E BIT 3, (IY+IND)
EDBB OTDR FDCB@566 BIT 4, (IY+IND)
FDGO ADD IY,BC FDCBO56E BIT 5, (IY+IND)
FD19 aDD 1Y,DE FDCB@576 BIT 6, (IY+IND)
FD218405 LD IY,NN FDCB@57E BIT 7, (IY+IND)
FD228405 LD (NN) , IV FDCBP586 RES @, (IY+IND)
D23 INC IV FDCB@58E RES 1, (IY+IND)
FD29 ADD IVY,IY FDCBE596 RES 2, (IY+IND)
FD2AB405 LD IY, (NN) FDCBBS9E RES 3, (IY+IND)
FD28B DEC IY FDCBBSAG RES 4, (IY+IND)
FD3455 INC (IY+IND) FDCBE5AE RES 5, (IY+IND)
FD3585 DEC (IY+IND) FDCBO5B6 RES 6, (IY+IND)
FD360520 LD (IY+IND) ,N FDCB@5BE RES 7, (IY+IND)
FD39 ADD IY,SP FDCBB5CE SET @, (IY+IND)
FD4605 LD B, (IY+IND) FDCBBSCE SET 1, (IY+IND)
FD4EBS LD C, (IY+IND) FDCBB5D6 SET 2, (IY+IND)
FD5605 LD D, (IY+IND) FDCB@5DE SET 3, (IY+IND)
FD5E@5 LD E, (LY+IND) FDCB@5EG SET 4, (IY+IND)
FD6685 LD H, (IY+IND) FDCB@5EE SET 5, (IY+IND)
FD6EGS LD L, (IY+IND) FDCB@5F6 SET 6, (IY+IND)
FD70085 LD (IY+IND) ,B FDCB@5FE SET 7, (IY+IND)
FD7185 LD (IY+IND),C

FD7285 LD (IY+IND),D

Alphabetic List of Z-88 Instructions PAGE 179
APPENDIX D: Alphabetic List of Z-88 Instructions
SOURCE SOQURCE

OBJECT CODE STATEMENT OBJECT CODE STATEMENT

8E ADC A, (HL) DDCBO546 BIT B, (IX+IND)
DD8E@S ADC A, (IX+IND) FDCB@546 BIT @, (IY+IND)
FDB8E@5 ADC A, (IY+IND) CB47 BIT a,A

8F ADC A,A CB44g BIT 3,B

88 ADC A,B CB41 BIT g,C

89 ADC A,C CB42 BIT 3,D

8A ADC A,D CB43 BIT a,B

8B ADC A,E cB44 BIT g,H

8C ADC A,H CB45 BIT g,L

8D ADC A, L CB4E BIT 1, (HL)
CE28 ADC A,N DDCB@S54E BIT 1, (IX+IND)
ED4A ADC HL,BC FDCBO54E BIT 1, (IY+IND)
BEDSA ADC HL,DE CB4F BIT 1,A

ED6A ADC HL, HL CcB48 BIT 1,B

ED7A ADC HL,SP CcB49 BIT 1,C

86 ADD A, (HL) CcB4A BIT i,D
DD8685 ADD A, (IX+IND) CB4B BIT 1,E
FD86G5 ADD A, (IY+IND) cB4C BIT 1,H

87 ADD A,A CB4D BIT i,L

8¢ ADD A,B CB56 BIT 2, (HL)

81 ADD A,C DDCB@556 BIT 2, (IX+IND)
82 ADD A,D FDCB@556 BIT 2, (IY+IND)
83 ADD A,E CB57 BIT 2,A

84 ADD A,H CB5¢ BIT 2,B

85 ADD A,L CB51 BIT 2,C

Cc620 ADD A,N CB52 BIT 2,D

29 ADD HL,BC CB53 BIT 2,E

19 ADD HL,DE CBS4 BIT 2,H

29 ADD HL,HL CB55 BIT 2,L

39 ADD HL,SP CB5E BIT 3, (HL)
DD@9 ADD I1X,BC DDCB@55E BIT 3, (IX+IND)
DD19 ADD IX,DE FDCB@55E BIT 3, (IY+IND)
DD29 ADD IX,IX CB5F BIT 3,A

DD39 ADD IX,SP CB58 BIT 3,B

FD@9 ADD 1y,BC CB59 BIT 3,C

FD19 ADD IY,DE CB5hA BIT 3,D

FD29 ADD ivy,IY CBS5B BIT 3,E

FD39 ADD 1Yy,Sp CB5C BIT 3,H

A6 AND (HL) CB5D BIT 3,L
DDA6YS AND (IX+IND) CB66 BIT 4, (HL)
FDAGYS AND (IY+IND) DDCBP566 BIT 4, (IX+IND)
A7 AND A FDCB@O566 BIT 4, (IY+IND)
AQ AND B CB67 BIT 4,A

Al AND C CB6# BIT 4,B

A2 AND D CB61 BIT 4,C

A3 AND E CB62 BIT 4,D

A4 AND H CB63 BIT 4,E

A5 AND L CB64 BIT 4,H

E620 AND N CB65 BIT 4,L

CB46 BIT @, (HL) CB6E BIT 5, (HL)

Alphabetic List of Z-8@¢ Instructions PAGE 188

SOURCE SOURCE
OBJECT CODE STATEMENT OBJECT CODE STATEMENT
DDCBG5GE BIT 5, (IX+IND) EDAG CPD
FDCBYS6E BIT 5,(IY+IND) EDB9 CPDR
CB6F BIT 5,A EDAl CPL
CB68 BIT 5,B EDB1 CPIR
CB69 BIT 5,C 2F CPL
CcB6A BIT 5,D 27 DAA
CB6B BIT 5,E 35 DEC (HL)
CB6C BIT 5,H DD3505 DEC (IX+IND)
CB6D BIT 5,L FD3585 DEC (IY+IND)
CB76 BIT 6, (HL) 3D DEC A
DDCB@576 BIT 6, (IX+IND) @5 DEC B
FDCBB576 BIT 6,(IY+IND) @B DEC BC
CB77 BIT 6,A @D DEC C
CB70 BIT 6,B 15 DEC D
CB71 BIT 6,C 1B DEC DE
CB72 BIT 6,D 1D DEC E
CB73 BIT 6,E 25 DEC H
cB74 BIT 6,H 2B DEC HL
CB75 BIT 6,L DD2B DEC IX
CB7E BIT 7, (HL) FD2B DEC IY
DDCB@57E BIT 7,(IX+IND) 2D DEC L
FDCBB57E BIT 7,(IY+IND) 3B DEC SP
CB7F BIT 7,A F3 DI
CcB78 BIT 7,B 102E DJNZ DIS
CcB79 BIT 7,C FB EI
CB7A BIT 7,D £3 EX (SP) ,HL
CcB7B BIT 7,E DDE3 EX (SP) ,IX
CB7C BIT 7,H FDE3 EX (sp),IY
CB7D BIT 7,L 98 EX AF,AF'
DC8495 CALL C,NN EB EX DE, HL
FC8405 CALL M,NN D9 EXX
D48495 CALL NC,NN 76 HALT
CD8405 CALL NN ED46 IM)
C484@5 CALL NZ,NN ED56 IM 1
F48405 CALL P,NN ED5E M 2
EC8405 CALL PE,NN ED78 IN A, (C)
E48405 CALL PO,NN DB 20 IN A,N
cCc84p5 CALL Z,NN ED4D IN B, (C)
3F CCF ED48 IN ¢, (C)
8E cp (HL) ED50 IN D, (C)
DD8EBS cp (IX+IND) ED58 IN E, (C)
FDBE®5 cp (IY+IND) ED60 IN H, (C)
BF cp A ED68 IN L, (C)
B8 cp B 34 INC (HL)
B9 cp o DD3405 INC (IX+IND)
BA cp D FD3405 INC (IY+IND)
BB cp E 3c INC A
BC cp H ga INC B
BD cp L 93 INC BC
FE20 cp N @cC INC C

Alphabetic List of Z-8¢ Instructions PAGE 181

SOURCE SOURCE

OBJECT CODE STATEMENT OBJECT CODE STATEMENT

T4 INC D FOTIGS D (IY+IND),C
13 INC DE FD7205 LD (IY+IND) ,D
1c INC E FD7305 LD (IY+IND) ,E
24 INC H FD7485 LD (IY+IND) ,H
23 INC HL FD7585 LD (IY+IND) ,L
DD23 INC IX FD360520 LD (IY+IND) ,N
FD23 INC IY 3284085 LD (NN) ,A

2C INC L ED438405 LD (NN) ,BC

33 INC 8P ED538405 LD (NN) ,DE
EDAA IND 228485 LD (NN) ,HL
EDBA INDR DD228485 LD (NN) , IX
EDA2 INI FD228405 LD (NN) ,IY
EDB2 INIR ED738485 LD (NN) ,SP

£9 Jp (HL) @A LD A, (BC)
DDE9 Jp (IX) 1A LD A, (DE)
FDE9 Jp (1Y) 7E LD A, (HL)
DA84#5 Jp C,NN DD7E@5 LD A, (IX+IND)
FA8405 Jp M, NN FD7E@S LD A, (IY+IND)
D28405 Jp NC, NN 3A8405 LD A, (NN)
C38405 Jp NN 7F LD a,A
C28485 Jp NZ , NN 78 LD A,B

F28405 Jp P, NN 79 LD A,C

EA8405 Jp PE,NN 7A LD a,D

E28405 Jp PO, NN 7B LD A,E

CA84¢5 Jp Z ,NN 7C LD A,H

382E JR DIS ED57 LD A, I

302E JR NC,DIS 7D LD A, L

202E JR NZ,DIS 3E20 LD A,N

282E JR Z,DIS 46 LD B, (HL)

92 LD (BC) ,A DD4605 LD B, (IX+IND)
12 LD (DE) ,A FD4665 LD B, (IY+IND)
77 LD (HL) ,A 47 LD B,A

70 LD (HL) ,B 49 LD B,B

71 LD (HL) ,C 41 LD B,C

72 LD (HL) ,D 42 LD B,D

73 LD (HL) ,E 43 LD B8,E

74 LD (HL) ,H 44 LD D,H

75 LD (HL) ,L 45 LD D,L

3620 LD (HL) ,N 3620 LD B,N

DD7785 LD (IX+IND) ,A EDA4B8485 LD BC, (NN)
DD7805 LD (IX+IND) ,B 018485 LD BC, NN
DD7185 LD (IX+IND) ,C 4E LD C, (HL)
DD7205 LD (IX+IND) ,D DDAE®S LD ¢, (IX+IND)
DD73085 LD (IX+IND) ,E FDAESS LD C, (IY+IND)
DD74085 LD (IX+IND) ,H 4F LD c,A
DD7585 LD (IX+IND) ,L 48 LD ¢,B
DD368520 LD (IX+IND) ,N 49 LD c,c

FD7785 LD (IY+IND) ,A 4A LD c,D

FD7085 LD (IY+IND) ,B 4B LD C,E

Alphabetic List of Z-80¢ Instructions PAGE 182

SOURCE SOURCE
OBJECT CODE STATEMENT OBJECT CODE STATEMENT
4D LD C,L 6A b LD
PE20 LD C,N 68 LD L,E
56 LD D, (HL) 6C LD L,H
DD5695 LD D, (IX+IND) 6D LD L,L
FD5605 LD D, (IY+IND) 2E20 LD L,N
57 LD D,A ED7B84¢5 LD SP, (NN)
59 LD D,B F9 LD SP,HL
51 LD D,C DDF9 LD SP,IX
52 LD D,D FDF9 LD SP,IY
53 LD D,E 318405 LD SP,NN
54 LD D,H EDAS8 LDD

55 LD D,L EDBS8 LDDR

1620 LD D,N EDA® LDI
ED5B8405 LD DE, (NN) EDB@ LDIR

118485 LD DE, NN ED44 NEG

5E LD E, (HL) 90 NOP

DD5E@5 LD E, (IX+IND) B6 OR (HL)
FD5E@A5 LD E, (IY+IND) DDB605S OR (IX+IND)
5F LD E,A FDB6GS OR (IY+IND)
58 LD E,B B7 OR A

59 LD E,C B0 OR B

5A LD E,D Bl OR o

58 LD E,E B2 OR D

5C LD E,H B3 OR E

5D LD E,L B4 OR H
1E20 LD E,N B5 OR L

66 LD H, (HL) F620 OR N
DD6685 LD H, (IX+IND) EDBB OTDR

FD6605 LD H, (IY+IND) EDB3 OTIR

67 LD H,A ED79 ouT (C) ,A
60 LD H,B ED41 ouT (C),B
61 LD H,C ED49 ouT (¢),C
62 LD H,D ED51 our (C),D
63 LD H,E ED59 ouT (C) ,E
64 LD H,H ED61 ouT (C) ,H
65 LD H,L ED69 ouT ¢y ,L
2620 LD H,N D328 OUT N,A
2A8405 LD HL, (NN) EDAB OUTD

218405 LD HL, NN EDA3 OUTI

ED47 LD I,A Fl POP AF
DD2A8485 LD IX, (NN) cl POP BC
DD218495 LD 1X,NN Dl POP DE
FD2A8405 LD IY, (NN) El POP HL
FD2184@5 LD IY,NN DDE1 POP IX

6E LD L, (HL) FDE1 POP Iy
DD6EBS5 LD L, (IX+IND) F5 PUSH AF
FD6E®S LD L, (IY+IND) C5 PUSH BC

6F LD L,A D5 PUSH DE

68 LD L,B E5 PUSH HL

69 LD L,C DDES PUSH 1IX

SOURCE
OBJECT CODE STATEMENT
FDES PUSH 1Y
CB86 RES g, (HL)
DDCBPS86 RES @, (IX+IND)
FDCB@596 RES @, (IY+IND)
CB87 RES g,A
CB8g RES 2,B
CB81 RES g,cC
CB82 RES @,D
CB83 RES g,k
CB84 RES g,H
CB85 RES g,L
CB8E RES 1, (HL)
DDCB@58E RES 1, (IX+IND)
FDCB@58E RES 1, (IY+IND)
CB8F RES 1,A
cB88 RES 1,8
CB89 RES 1,cC
CB8A RES 1,D
CB8B RES 1,E
CB8C RES 1,4
CB8D RES i,L
CBY6 RES 2, (HL)
DDCB@596 RES 2, (IX+IND)
FDCB@#596 RES 2, (IY+IND)
CB97 RES 2,A
CB9g RES 2,8
CB91 RES 2,C
CB92 RES 2,D
CB93 RES 2,E
CB94 RES 2,H
CB95 RES 2,L
CB9E RES 3, (HL)
DDCB@S59E RES 3, (IX+IND)
FDCB@59E RES 3, (IY+IND)
CBYF RES 3,A
CB98 RES 3,B
CB99 RES 3,C
CB9A RES 3,D
CB9B RES 3,E
CB9C RES 3,4
CB9D RES 3,L
CBA6 RES 4, (HL)
DDCB@5A6 RES 4, (IX+IND)
FDCB@5A6 RES 4, (IY+IND)
CBA7 RES 4,A
CBAg RES 4,B
CBAl RES 4,cC
CBA2 RES 4,D
CBA3 RES 4,E
CBA4 RES 4,H

Alphabetic List of Z-8¢ Instructions

PAGE 183
SOURCE
OBJECT CODE STATEMENT
CBAS RES 4,L
CBAE RES 5, (HL)
DDCB@5AE RES 5, (IX+IND)
FDCB@5AE RES 5, (IY+IND)
CBAF RES 5,4
CBAS8 RES 5,B
CBA9 RES 5,C
CBAA RES 5,D
CBAB RES 5,E
CBAC RES 5,H
CBAD RES 5,L
CBB6 RES 6, (HL)
DDCBPS5B6 RES 6, (IX+IND)
FDCB@5B6 RES 6, (IY+IND)
cBB7 RES 6,A
CBB@ RES 6,B
cBBl RES 6,C
CBB2 RES 6,D
CBB3 RES 6,E
CBB4 RES 6,H
CBB5 RES 6,L
CBBE RES 7, (HL)
DDCB@S5SBE RES 7, (IX+IND)
FDCB@S5BE RES 7+ (IY+IND)
CBBF RES 7.A
CBB8 RES 7,B
CBB9 RES 7,C
CBBA RES 7,D
CBBB RES 7,E
CBBC RES 7,H
CBBD RES 7,L
Cc9 RET
D8 RET C
F8 RET M
bg RET NC
Ca RET NZ
Foa RET P
E8 RET PE
EQ RET PO
Cc8 RET Z
ED4D RETT
ED45 RETN
CB16 RL (HL)
DDCB@516 RL (IX+IND)
FDCB@AS16 RL (IY+IND)
CB17 RL A
CBlg RL B
CB1l1 RL C
CBl2 RL D
CB13 RL E

Alphabetic List of 2Z-80 Instructions PAGE 184

SOURCE SOURCE
OBJECT CODE STATEMENT OBJECT CODE STATEMENT
CB14 RL 31 98 SBC K,B
CB15 RL L 99 SBC A,C
17 RLA 9A SBC A,D
CBg6 RLC (HL) 9B sSBC AE
DDCB@506 RLC (IX+IND) 9C SBC A,H
FDCBO506 RLC (IY+IND) 9D sBC A,L
cBo7 RLC A DE29 SBC A,N
CBoy RLC B ED42 SBC HL,BC
CBal RLC C ED52 sBC HL,DE
cBg2 RLC D ED62 SBC HL,HL
cBo3 RLC E ED72 SBC HL,SP
CBp4 RLC H 37 SCF
CBg5 RLC L CBC6 SET g, (HL)
87 RLCA DDCB@5C6 SET @, (IX+IND)
ED6F RLD FDCB@5C6 SET @, (IY+IND)
CBlE RR (HL) CBC7 SET 3,A
DDCB@SI1E RR (IX+IND) CBC9 SET g,B
FDCB@51E RR (IY+IND) CBC1 SET g,C
CB1lF RR A CBC2 SET #,D
cB18 RR B CBC3 SET g,k
CB19 RR C CBC4 SET g,H
CBlA RR D CBC5 SET g,L
CB1B RR E CBCE SET 1, (HL)
cBlC RR H DDCB@5CE SET 1, (IX+IND)
CBlD RR L FDCBOS5CE SET 1, (IY+IND)
1F RRA CBCF SET 1,A
CBOE RRC (HL) CBC8 SET 1,B
DDCB@58E RRC (IX+IND) CBC9 SET 1,C
FDCB@S0E RRC (IY+IND) CBCA SET i,D
CBOF RRC A CBCB SET 1,E
cB@8 RRC B cBCC SET 1,H
CB@9 RRC C CBCD SET 1,L
CBAA RRC D CBD6 SET 2, (HL)
cB@oB RRC E DDCB@5D6 SET 2, (IX+IND)
cBac RRC H FDCB@5D6 SET 2, (IY+ID)
CBYD RRC L CBD7 SET 2,4
gF RRCA CBDg SET 2,B
ED67 RRD CBD1 SET 2,C
c7 RST 4] cBD2 SET 2,D
CF RST #81 CBD3 SET 2,k
D7 RST 1gH CBD4 SET 2,H
DF RST 18H CBD5 SET 2,L
E7 RST 208 CBDE SET 3, (HL)
EF RST 28H DDCB@S5DE SET 3, (IX+IND)
F7 RST 3e4 FDCB@S5DE SET 3, (IY+IND)
FF RST 38H CBDF SET 3,A
9E SBC A, (HL) CBD8 SET 3,B
DDY9EBS SBC A, (IX+IND) CBDS SET 3,C
FDOE®GS sBC A, (IY+IND) CBDA SET 3,D
9F SBC A,A CBDB SET 3,E

OBJECT CODE

CBDC
CBDD
CBE6
DDCB@5E6
FDCB@SES
CBE7
CBE®
CBEl
CBE2
CBE3
CBE4
CBES
CBEE
DDCB@5EE
FDCB@ASEE
CBEF
CBES
CBE9
CBEA
CBEB
CBEC
CBED
CBF6
DDCB@5F6
FDCB@SF6
CBF7
CBFg
CBF1
CBF2
CBF3
CBF4
CBFS
CBFE
DDCB@SFE
FDCBASFE
CBFF
CBF8
CBF9
CBFA
CBFB
CBFC
CBFD
CB26
DDCB@526
FDCBOS526
CcB27
CB29
CB21
cB22
cB23

SOURCE

SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SET
SLA
SLA
SLA
SLA
SLA
SLA
SLA
SLA

STATEM

ENT

3'H

3,L

4, (HL)

4, (IX+IND)
(IY+IND)

>

HL)
IX+IND)
IY+IND)

HL)
IX+IND)
IY+IND)

m
£

IX+IND)
IY+IND)

BUOQEWP~amn " ~NNNNNNNNN OOV UTUTUT VI UT U U U S D B D
pial--NolvEeN -k oo Yol al--Rclwiel I PoVoPo ol Mo NoReN B PP P Nl SolwleN:]

Alphabetic List of Z-8¢ Instructions

PAGE 185

SOURCE
OBJECT CODE STATEMENT
CB24 STA H
CB25 SLA L
CB2E SRA (HL)
DDCB@52E SRA (IX+IND)
FDCB@52E SRA (IY+IND)
CB2F SRA A
CB28 SRA B
CB29 SRA C
CB2A SRA D
CB2B SRA E
CB2C SRA H
CB2D SRA L
CB3E SRL (HL)
DDCB@53E SRL (IX+IND)
FDCB@53E SRL (IY+IND)
CB3F SRL A
CB38 SRL B
CB39 SRL C
CB3A SRL D
CB3B SRL E
CB3C SRL H
CB3D SRL L
96 SUB (HL)
DD9685 SUB (IX+IND)
FD9605 SUB (IY+IND)
97 SUB A
90 SUB B
91 SUB C
92 SUB D
93 SUB E
94 SUB H
95 SUB L
D620 SUB N
AE XOR (HL)
DDAE@S XOR (IX+IND)
FDAE@S5 XOR (IY+IND)
AF XOR A
A8 XOR B
A9 XOR C
AA XOR D
AB XOR E
.Y XOR H
AD XOR L
EE20 XOR N

Selected Bibliography PAGE 186
Appendix E: Selected Bibliography

Radio Shack Reference Manuals:
LEVEL I1 BASIC REFERENCE MANUAL.

TRSDOS & DISK BASIC REFERENCE MANUAL (Catalog Number
26-2104) .

EDITOR/ASSEMBLER USER INSTRUCTION MANUAL (Catalog Number
26-20082) .

Above are all published by Radio Shack, a division of Tandy
Corporation, Fort Worth, Texas 76182.

Z-8¢ Assembly-language programming:

TRS-80 ASSEMBLY-LANGUAGE PROGRAMMING by William Barden, Jr.
Published by Radio Shack (Catalog Number 62-2006) .

THE Z-8# MICROCOMPUTER HANDBOOK by William Barden, Jr. Howard
W, Sams & Co., Inc., 4398 West 62nd Street, Indianapolis,
Indiana 46268.

PRACTICAL MICROCOMPUTER PROGRAMMING: THE Z80 by W. J. Weller.
Northern Technology Books, Box 62, Evanston, Illinois 60204.

TRS-88 technical information:

MICRO APPLICATIONS TRS-8@# DISC INTERFACING GUIDE by William
Barden, Jr. Micro Applications, 24232 Tahoe Court, Laguna
Niguel, California 92677.

TRS-8@ DISK & OTHER MYSTERIES by H. C. Pennington. Published
by IJG Inc., 569 North Mountain Avenue, Upland, California
91786.

TRS—-88 SUPERMAP by Fuller Software, 638 East Springdale, Grand
Prairie, Texas 75051.

DISASSEMBLED HANDBOOK FOR TRS~80 (two volumes). Richcratt
Engineering Ltd., Drawer 1865, Chautauqua, New York 14722.

" PERSONAL COMPUTERS

TRS-80

Assembly
Language

HubertS.Howe .

Now for both the first-time user as well as expe-
rienced users of the TRS-80 microcomputer, here is a
book that explains assembly language programming
in a thorough, yet easy-to-understand style. TRS-80
Assembly Language contains all of the information
you need in order to develop machine language
‘programs.

TRS-80 Assembly Language incorporates into a
single volume all the pertinent facts and information
you need to know to program and enjoy the TRS-80
microcomputer.

Hubert S. Howe, Jr., is an Associate Professor at
Queens College of the City University of New York. He
specializes in the subject of electronic music.

0-13-931121-1

